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Preface

The Fifth Workshop on Information Theoretic Methods in Science and Engineering (WITMSE 2012)
took place on August 27–30, 2012, in Amsterdam, Netherlands. This workshop series started in 2008.
The first three iterations were hosted by the Technical University of Tampere, the fourth by the Univer-
sity of Helsinki and the Helsinki Institute for Information Technology HIIT, and this one by Centrum
Wiskunde & Informatica (CWI), the national research institute for mathematics and computer science
in Amsterdam, Netherlands. The event is sponsored by Stochastics – Theoretical and Applied Research
(STAR).

As the title of the workshop suggests, WITMSE seeks speakers from a variety of disciplines with
emphasis on both theory and applications of information and coding theory with special interest in
modeling. Since the beginning our plan has been, and still is, to keep the number of participants small
and to ensure the highest possible quality, which has been accomplished by inviting distinguished
scholars as speakers.

This year’s invitees include three plenary speakers: Peter Grünwald (CWI Amsterdam), Dominik
Janzing (Max Planck Institute, Tübingen, Germany), and Rui M. Castro (Eindhoven University of Tech-
nology, Netherlands). Each has demonstrated a keen eye for the bigger picture, and is allotted a longer
time slot to expand upon his views.

We would like to thank all the participants for their contributions to this event, and we hope that
the extended abstracts that were submitted by many and that are collected in these proceedings will
help make the ideas discussed at this workshop more easily accessible in the future.

December 6, 2012
Workshop chairs

Steven de Rooij Wojciech Kotłowski
Jorma Rissanen Kenji Yamanishi
Teemu Roos Petri Myllymäki
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ADAPTING AIC TO CONDITIONAL MODEL SELECTION

Thijs van Ommen

Centrum Wiskunde & Informatica (CWI),
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands, Thijs.van.Ommen@cwi.nl

ABSTRACT

In statistical settings such as regression and time series,
we can condition on observed information when predict-
ing the data of interest. For example, a regression model
explains the dependent variables y1, . . . , yn in terms of the
independent variables x1, . . . , xn. When we ask such a
model to predict the value of yn+1 corresponding to some
given value of xn+1, that prediction’s accuracy will vary
with xn+1. Existing methods for model selection do not
take this variability into account, which often causes them
to select inferior models.

One widely used method for model selection is AIC
(Akaike’s Information Criterion [1]), which is based on
estimates of the KL divergence from the true distribution
to each model. We propose an adaptation of AIC that
takes the observed information into account when esti-
mating the KL divergence, thereby getting rid of a bias
in AIC’s estimate.

1. A BIAS IN AIC

The principle underlying AIC and many subsequent crite-
ria is that model selection methods should find the model
g which minimizes

−2 EU EV log g(V | θ̂(U)), (1)

where θ̂ represents the maximum likelihood estimator in
that model, and both random variables are independent
samples of n data points each, both following the true dis-
tribution of the data. The inner expectation is the KL di-
vergence from the true distribution to g(· | θ̂(U)) up to a
constant which is the same for all models. The quantity
(1) can be seen as representing that we first estimate the
model’s parameters using a random sample U, then judge
the quality of this estimate by looking at its performance
on an independent, identically distributed sample V.

In regression, time series, and other settings, the data
points consist of two parts ui = (xi, yi), and the mod-
els are sets of distributions on the dependent variable y
conditioned on the independent variable x (which may or
may not be random). We call these conditional models.
Then (1) can be adapted in two ways: as the extra-sample
error

−2 EY|X EY′|X′ log g(Y′ | X ′, θ̂(X,Y)), (2)

and, replacing both X and X ′ by a single variable X , as
the in-sample error

−2 EY|X EY′|X log g(Y′ | X, θ̂(X,Y)). (3)

The standard expression behind AIC (1) makes no ref-
erence to X or X ′, which leads a straightforward deriva-
tion of AIC for a conditional model to make the tacit as-
sumption X = X ′, so that standard AIC estimates the in-
sample error. This applies for instance to the well-known
form of AIC for linear models, i.e. the residual sum of
squares with a penalty of 2k, where k is the model’s or-
der.

However, the extra-sample error (2) is more appropri-
ate as a measure of the expected performance on new data.
Using the in-sample error (3) instead results in a biased
estimate of this performance. As the bias gets worse for
larger models, this will lead to inferior model selection.

2. AN UNBIASED ADAPTATION

To get an estimator for (2), we do not make any assump-
tions about the process generating X and X ′ (it may not
even be random) but treat their values as given. We de-
note the number of data points in X and X ′ by n and
n′, respectively. In the case of simple linear regression
with fixed variance, a derivation similar to AIC’s leads to
a penalty term of k + κX′ in place of AIC’s 2k, where

κX′ =
n

n′
tr
[
X ′>X ′(X>X)−1

]
,

where X and X ′ represent design matrices. Similarly, a
small sample corrected version analogous to AICc [2] can
be derived and has penalty

k + κX′ +
(k + κX′)(k + 1)

n− k − 1
.

3. FOCUSED AIC FOR PREDICTION

If our goal is prediction, then the value X used in our
derivation corresponds to the data we have observed al-
ready, and X ′ may be replaced by the single point x for
which we need to predict the corresponding y. This jus-
tifies treating X and X ′ as given in this practical setting.
Thus we use x already at the stage of model selection,
whereas standard methods for model selection only use it
after selecting a model, to find the distribution of y con-
ditioned on that x. Then for the linear model with fixed
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Figure 1. Example illustrating the result of applying FAIC
to a sample of 100 data points. There are three models: the
constant, linear, and quadratic functions; the true distribu-
tion uses a linear function. The choice of FAIC is marked
in green: it selects a quadratic (red) function for x close
to many observed data points, and a linear (blue) function
elsewhere.

variance, κx becomes

κx =
n

n′
tr[xx>(X>X)−1] = nx>(X>X)−1x;

for unknown variance it becomes this value plus one.
We name this method Focused AIC. The term “focus”

was first used by Claeskens and Hjort’s [3] to describe
a model selection method that focuses on a parameter of
interest when selecting a model. The behaviour of FAIC
is illustrated in Figure 1.

4. EXPERIMENTAL RESULTS

Simulation experiments with linear regression models in-
dicate that our method outperforms AIC in terms of loga-
rithmic (or squared) loss in many situations. Representa-
tive results are shown in Figure 2.

Figure 2. Average performance of different model selec-
tion methods as a function of x. Our FAIC (in green) out-
performs the other methods for extreme x and is compete-
tive otherwise; AIC (red) overfits especially for extreme x;
BIC (Bayesian Information Criterion, blue) is less likely
to overfit than AIC; FIC (Focused Information Criterion,
purple) is similar to AIC but selects a constant function in
the center.
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AN INFORMATION-THEORETIC METHOD FOR ESTIMATING THE PERFORMANCE
OF COMPUTER SYSTEMS

Boris Ryabko

Siberian State University of Telecommunications and Information Sciences,
Institute of Computational Technology of Siberian Branch of Russian

Academy of Science, Novosibirsk, Russia; boris@ryabko.net

ABSTRACT

We consider a notion of computer capacity as a novel ap-
proach to evaluation of computer performance. Computer
capacity is based on the number of different tasks that can
be executed in a given time. This characteristic does not
depend on any particular task and is determined only by
the computer architecture. It can be easily computed at
the design stage and used for optimizing architectural de-
cisions.

1. INTRODUCTION

The problem of computer performance evaluation attracts
much research because various aspects of performance are
the key goals of any new computer design, see, e.g., [1, 2].
Simple performance metrics, such as the number of inte-
ger or floating point operations executed per second, are
not adequate for complex computer architectures we face
today. A more appropriate and widely used approach is to
measure performance by execution time of specially de-
veloped programs called benchmarks. The main issues of
benchmarking are well known, we only mention a few.
First, it is very difficult, if ever possible, to find an ad-
equate set of tasks (in fact, any two different researchers
suggest quite different benchmarks). Then, when a bench-
mark is used at the design stage, it must be run under
a simulated environment which slows down the execu-
tion in many orders of magnitude, making it difficult to
test various design decisions in the time-limited produc-
tion process. As a consequence, the designers reduce the
lengths and the number of benchmarks, which raises the
question of conformity with real applications. Quite of-
ten, benchmarking is applied to already made devices for
the purposes of evaluation and comparison. Here, the
benchmarks produced by a hardware manufacturer may be
suspected of being specially tuned just to facilitate sales.
The benchmarks suggested by independent companies are
prone to be outdated when applied to technologically novel
devices. All these appeal to objectivity of evaluation re-
sults. The performance figures obtained in this way may
be suitable for one kind of applications but useless for an-
other.

We suggest a completely different approach to evalu-
ation of computer performance which allows to circum-
vent the difficulties outlined above. The new approach is

based on calculation of the number of different tasks that
can be executed in time T . This is quite similar to deter-
mining the channel capacity in information theory through
the number of different signals that can be transmitted in
a unit of time [3]. If one computer can execute, say, 1010

different tasks in one hour while another one can execute
1020 tasks, we may conclude that the latter computer is
more capable in doing its work. The number of different
tasks does not depend on any particular task and is deter-
mined only by the computer architecture which, in turn,
is described by the instruction set, execution times of in-
structions, structure of pipelines and parallel processing
units, memory structure and access time, and some other
basic computer parameters. All these parameters can be
set and adapted at the design stage to optimize the perfor-
mance.

It is important to note that, generally speaking, the
number of different tasks grows exponentially as a func-
tion of time. Indeed, if we have two different tasks X and
Y , each executed in time T , then their succession XY
will require 2T , and the whole number of different tasks
will grow from N to about N2 (not N2 exactly because
there are some instructions that may start before and end
after the moment T ). So we may write N(2T ) ≈ N2(T )
and, generally, N(kT ) ≈ Nk(T ), where N(T ) denotes
the number of task whose execution time equals T . This
shows informally that the number of tasks grows expo-
nentially as a function of time. Formal arguments will be
presented below. So it makes sense to consider logN(T )
and to deal only with exponents, which may differ for dif-
ferent computers.

The idea of computer capacity was first suggested in
[4, 5], where it was applied to Knuth’s MMIX computer
[7]. In this paper, we extend the approach to modern
computers that incorporate cache memory, pipelines and
parallel processing units. Thus we prepare a theoretical
basis for determining capacities and making comparisons
against benchmarks of well-known processors of Intel x86
family which was presented in [8].

2. COMPUTER CAPACITY

Denote by I = {u1, u2, . . . , us} the instruction set of a
computer (processor). An admissible sequence of instruc-
tions X = x1x2 . . . xt, xi ∈ I , seen as a process in time,
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is called a computer task. The term “admissible” means
that the instruction sequence X can be executed up to the
last element without errors in computation (so-called ex-
ceptions), such as division by zero or illegal memory ref-
erence. We consider two tasksX and Y as different if they
differ at least in one instruction, i.e., there is an i such that
xi 6= yi. Notice also the difference between the computer
task and the computer program. The task, as we think of
it, is the flow of instructions executed by the processor. It
is produced as a realization of some program. For exam-
ple, if the program contains a loop which is to be iterated
100 times, the corresponding task will contain the body of
the loop repeated 100 times.

Denote the execution time of instruction x by τ(x).
Then the execution time τ(X) of a task X is given by

τ(X) =
t∑
i=1

τ(xi).

The number of different tasks whose execution time equals
T may be written as

N(T ) = |{X : τ(X) = T}|.
The main performance characteristic which is essen-

tial in our approach, is the computer capacity C(I) de-
fined as

C(I) = lim sup
T→∞

logN(T )
T

. (1)

Notice that this definition is virtually the same as the
definition of channel capacity in [3], where N(T ) means
the number of different signal sequences of duration T .
The majority of modern computers are synchronous de-
vices, i.e., they operate in discrete time scale determined
by a clock cycle. In this case τ(x) can be measured in the
number of processor cycles. It was shown in [5] that if all
τ(x) are integers with the greatest common divisor 1, then
the limsup in (1) equals lim and always exists.

Notice also the following thing. Let there be given
two computers with identical sets of instructions I1 and
I2 apart that the first computer is twice faster than the sec-
ond one, i.e. τ1(x) = τ2(x)/2 for any x ∈ I1 (I2). From
definition (1) we immediately obtain that the capacity of
the first computer is two times greater than that of the sec-
ond one, i.e. C(I1) = 2C(I2). Apparently, this equation
is quite natural.

The suggested approach can be applied to multipro-
cessor systems. Consider a computer system that consists
of l processors which can operate independently. Let each
j-th processor has an instruction set Ij and can perform
Nj(T ) tasks in time T . Then the total number of tasks
N(T ) = N1(T )N2(T ) · · ·Nl(T ), and from (1) we have

C(⊗lj=1Ij) = C(I1) + C(I2) + ...+ C(Il) , (2)

where C(⊗lj=1Ij) is the capacity of the considered multi-
processor system. In particular, the capacity of computer
system with l identical processors is l times greater than
the capacity of computer with one processor. The same ar-
guments are relevant to distributed computer systems, or

computer networks. Note that (2) is not a simple sum if
the processors have some shared resources, such as shared
memory. In this case the individual capacities must be di-
minished due to competitions for shared resources.

The definition of computer capacity is quite general,
it does not restrain us from using one or other model of
computer task formation. We may apply restrictions on
instruction sequences, consider dependence of instruction
execution times upon preceding instructions, and so on.
Generally, the calculation of the limit in (1) becomes a
complicated combinatorial problem. But as a first step,
we can use a simple method suggested by Shannon in
[3] for finding the capacity of noiseless channel where
code symbols had different durations. When we use this
simple method, we assume that all sequences of instruc-
tions are admissible. Clearly, by doing that we obtain
an upper bound of capacity, which we denote by Ĉ(I),
because the number of admissible instruction sequences
N(T ) cannot be larger than the number of all possible
sequences, denoted thus by N̂(T ). Despite this simplifi-
cation, we take proper account of the effects of caches,
pipelines and parallel processing, as will be shown be-
low. More specifically, following [3], for the instruction
set I = {u1, u2, . . . , us} we may state that the number of
all possible instruction sequences must satisfy the differ-
ence equation

N̂(T ) = N̂(T − τ1) + N̂(T − τ2) + · · ·+ N̂(T − τs).
Here N̂(T − τj) is the number of instruction sequences
of duration T ending in instruction uj . It is well-known
from the theory of finite dirrerences that asymptotically, as
T → ∞, N̂(T ) = ZT0 , where Z0 is the greatest positive
root of the characteristic equation

Z−τ(u1) + Z−τ(u2) + · · ·+ Z−τ(us) = 1. (3)

So from the definition of computer capacity (1) we have

Ĉ(I) = logZ0.

In what follows we will estimate Ĉ(I) as a first approxi-
mation of real computer capacity, realizing that there are
more complicated and more exact methods of findingC(I).

Consider some examples. Let the first computer has
only two instructions and execution time of each instruc-
tion is one clock cycle. So we have I1 = {u1, u2}, τ(u1) =
τ(u2) = 1 and the characteristic equation is 2Z−1 =
1. Hence Z0 = 2 and the computer capacity C(I1) =
log 2 = 1 bit per cycle. Now add a third instruction with
duration 2 cycles: I2 = {u1, u2, u3}, τ(u1) = τ(u2) = 1,
τ(u3) = 2. The characteristic equation is 2Z−1 +Z−2 =
1, its greatest root Z0 = 2.414. The capacity C(I2) =
1.27 bit per cycle, it is greater than C(I1) due to “more
rich” instruction set I2.

In practice, the computer instructions are often built of
operation codes and operands, which may be references to
internal registers, memory, or some immediate data. The
key point is that to find the computer capacity we must
consider the instruction set containing all operations with
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all combinations of operands. Let, for example, the com-
puter have 8 registers, 216 memory locations, and can per-
form two operations op1 and op2 of the following format:
(op1 reg reg) and (op2 reg mem), where reg is one of 8
registers, and mem is a reference to one of 216 memory
locations. Let op1 require 1 cycle and op2 2 cycles. Then
the characteristic equation will be

8 · 8
Z

+
8 · 216

Z2
= 1.

The solution Z0 = 757 and C(I3) = 9.56 bits per cycle.

3. ENTROPY EFFICIENCY

It should be noted that to calculate the computer capacity,
no probabilities or frequencies of instructions are needed.
It does not mean that all the instructions are assumed to
be equiprobable. In fact, the capacity is attained if the
instructions appear with some “optimal” probabilities. In
other words, the capacity is a maximal value which can be
obtained if we use the processor instructions with certain
frequencies. A connection between the computer capacity
and various probabilistic models is established with the
aid of the notion of entropy efficiency. There the sense of
“optimal” probabilities mentioned above is clarified.

Consider the situation when computer is used for solv-
ing a particular kind of problems. For example, we use
computer for solving differential equations. In this case
the set of tasks to be performed is a subset of all possi-
ble tasks. We assume that the tasks of the set of interest
can be modeled as realizations of a stationary and ergodic
stochastic process. Let X = x1x2x3 . . . be a sequence of
random variables taking values over instruction set I . De-
note by PX(w) the probability that x1x2 . . . xn+1 = w,
w ∈ In+1 for any n ≥ 0. The entropy rate is defined as
usually, see, e.g., [9]:

h(X) = lim
n→∞−

1
n+ 1

∑
w∈In+1

PX(w) logPX(w).

Now the entropy efficiency, as a measure of computer per-
formance, is defined as follows:

c(I,X) = h(X)/
∑
u∈I

PX(u)τ(u). (4)

In other words, c(I,X) is the ratio of the entropy rate of
instruction flow X to the average execution time of in-
struction.

To motivate this definition, notice that if we take a
large integer t and consider all t-element instruction se-
quences x1 . . . xt, then the number of “typical” sequences
will be approximately 2th(X), whereas the total execution
time of any sequence will be approximately t

∑
u∈I PX(u)τ(u).

(By definition of a typical sequence, the frequency of any
word w in it is close to the probability PX(w). The total
probability of the set of all typical sequences is close to
1.) So the ratio between log(2th(X)) and the average exe-
cution time will be asymptotically equal to (4) if t → ∞.

This observation shows the relation between computer ca-
pacity (1) and entropy efficiency: the former is defined
through the number of all tasks, the latter through the
number of typical tasks, executed in one time unit. An-
other conclusion from this consideration is that

c(I,X) ≤ C(I). (5)

Now we shall say some words about estimation of the
entropy efficiency. To do that we must observe the flow of
instructions generated by the application of interest. Then
we may use any method known in Information Theory to
estimate the entropy of the instruction sequence and prob-
abilities of particular instructions. Again, the simplest ap-
proach is to consider the case where all instructions are
independent and identically distributed (i.i.d. sequence).
In this situation the definition of entropy efficiency may
be re-written in the following form:

ĉ(I,X) = −
∑
u∈I

PX(u) logPX(u)/
∑
u∈I

PX(u)τ(u).

It can be easily checked now by direct calculation that if
PX(u) = Z

−τ(u)
0 for all u ∈ I , where Z0 is the greatest

root of characteristic equation (3), then

ĉ(I,X) = logZ0 = Ĉ(I),

i.e. the entropy efficiency reaches the computer capacity
and is maximal according to (5).

4. COMPUTER CAPACITY IN MODERN
COMPUTER ARCHITECTURES

The most essential elements of modern computer archi-
tectures that influence the capacity defined in (1) are cache
memory (usually organized in several levels), parallel exe-
cution units (such as floating point unit), instruction pipelines
and closely connected branch predictors, and multiple cores
(including such technologies as hyperthreading). In this
section, we address all these issues and show simple ways
of their solution when determining computer capacity.

To assess the effect of cache memory on computer ca-
pacity we observe what happens at every time instant. Let,
for example, instruction “ADD REG, MEM” is executed
which adds a word in memory to a register and stores the
result in the register. In our approach to estimation of ca-
pacity we assume that any register and any memory lo-
cation can be accessed. Let there be R registers and M
words in memory available. To show the main idea, con-
sider a cache memory consisting of two levels L1 and L2
of sizes L1 and L2, respectively. If the address MEM hits
L1 cache, let the execution time of the instruction be τL1.
Otherwise, if the address hits L2 cache, let the execution
time be τL2 (usually, much greater than τL1). If the ad-
dress is not cached, let the execution time be τM (usually,
much more greater than τL2). Suppose that L1 and L2 are
not exclusive, i.e. a memory location cached in L1 is also
cached in L2. Then the corresponding part of characteris-
tic equation will look like this:

RL1
1

ZτL1
+R(L2−L1)

1
ZτL2

+R(M −L2−L1)
1

ZτM
.
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If L1 and L2 are exclusive then we should not subtract L1

in the second summand. All other processor instructions
that operate with memory can be considered similarly.

The other issue is the presence of some units U1, U2,
. . . that can operate concurrently with the “main” part that
performs basic operations (e.g., FPU, MMX and XMM
blocks in x86 processors). Although the instructions ex-
ecuted by those units usually alternate with basic instruc-
tions and may have dependences, to find an upper bound
on computer capacity we may consider these units as in-
dependent processors, i.e. to find their own capacities and
sum them up according to (2). However, we must take into
account that some units may be mutually exclusive (e.g.,
FPU and MMX blocks cannot operate concurently in x86
processors since they are based on one and the same reg-
ister pool [10]). The solution is to consider all subsets
of mutually compatible units and calculate capacities of
those subsets. Then, since we are interested in an upper
bound of computer capacity, we may choose the greatest
capacity estimate. For example, there are two compati-
ble subsets in x86 processors: MAIN + FPU + XMM
and MAIN + MMX + XMM (obviously, there is no need
to consider the subsets of smaller sizes). The subset hav-
ing greater capacity determines the capacity of the whole
computer.

The next architectural feature is the pipeline process-
ing combined with branch prediction. Instruction timings
provided in documentation assume that the pipeline is op-
timally filled, i.e., there are no empty stages and execution
time is determined solely by the complexity of instruction.
However, the pipeline operation is stopped when a mispre-
dicted branch occurs. The instruction that must follow the
mispredicted branch is delayed for the number of cycles,
k, equal to the number of pipeline stages from the fetch
stage to the execute stage. The next instruction is delayed
for k−1 cycles and so on. The exact model would require
to consider all k-element instruction sequences with any
mispredicted branch. But we prefer a simpler way, suf-
ficient for obtaining an upper bound of capacity. Assume
that after any mispredicted branch we wait for k cycles be-
fore the execution of next instructions. That is, the execu-
tion time of mispredicted jump instruction is increased by
k cycles. Since the computer capacity is defined through
the number of all computer tasks, we can separately con-
sider predicted and mispredicted jump instructions.

Finally, we address the problem of parallelism which
is essential in hyper-threading and multicore technologies.

It is demonstrated there that computer performance in-
dicators obtained through calculation of computer capac-
ity and by benchmarks are very close to each other. So
the computer capacity approach definitely can be used at
the design stage when benchmarking is time-consuming
or not at all possible.

5. REFERENCES

[1] W. Stallings, Computer Organization and Architec-
ture: Designing for Performance. Prentice-Hall, 2009.

[2] A. S. Tanenbaum, Structured Computer Organization.
Prentice Hall, 2005.

[3] C. E. Shannon, “A mathematical theory of communi-
cation,” Bell Sys. Tech. J., Vol. 27, 1948, pp. 379–423,
pp. 623–656.

[4] B. Ryabko, “Using information theory to study the
efficiency and capacity of computers and similar de-
vices,” Proc. of the 2010 Workshop on Information
Theoretic Methods in Science and Engineering (Tam-
pere, Finland, 16-18 August 2010) .

[5] B. Ryabko , “On the efficiency and capacity of com-
puters,” Applied Mathematics Letters, v. 25, 2012, pp.
398 - 400

[6] B. Ryabko, “An information-theoretic approach to es-
timate the capacity of processing units,” Performance
Evaluation, V. 69, 2012, pp. 267–273.

[7] D. E. Knuth, The Art of Computer Programming. Vol.
1, Fascicle 1: MMIX – A RISC Computer for the New
Millennium. Addison-Wesley, 2005.

[8] A. Fionov, Yu. Polyakov, and B. Ryabko, “Applica-
tion of computer capacity to evaluation of Intel x86
processors,” 2nd International Congress on Computer
Applications and Computational Science, November
15–17, 2011, Bali, Indonesia, (Springer, Advances in
Intelligent and Soft Computing, Vol. 145, 2012, pp.
99–104).

[9] T. M. Cover and J. A. Thomas. Elements of Informa-
tion Theory. Wiley, 2006.

[10] Intel 64 and IA-32 Architectures Software Develop-
ers Manual Volume 1: Basic Architecture, Intel Corp.,
2011.

10



ANALYSING LIFE HISTORY CALENDAR DATA: A METHODOLOGICAL
COMPARISON

Mervi Eerola1, Satu Helske2

1 Department of Mathematics and Statistics,
FIN-20014 University of Turku, FINLAND, mervi.eerola@utu.fi,

2 Methodology Centre for Human Sciences/Department of Mathematics and Statistics,
P.O.Box 35, FIN-40014 University of Jyväskylä, FINLAND, satu.helske@jyu.fi

ABSTRACT

The life history calendar, also called an event-
history calendar, is a data-collection tool for ob-
taining reliable retrospective data about life events.
The advantage of a life history calendar is that
the order and proximity of important transitions
in multiple life domains can be studied at the
same time.

To illustrate the analysis of such data, we
compare the model-based probabilistic event his-
tory analysis and a more recent type of approach
of model-free data-mining, sequence analysis.
The latter is well known in bioinformatics in the
analysis of protein or DNA sequences. In life
course analysis it is less familiar but has pro-
vided novel insight to the diversity of life trajec-
tories and their relationship to life satisfaction.
We emphasize the differences, but also the com-
plementary advantages of the methods.

In event history analysis, we consider the data
generated by a marked point process
(Tn, Xn)n≥1, a time-ordered sequence of points
or events, characterised by pairs of random vari-
ables, the occurrence times T1, T2, ... and marks
X1, X2, ... describing what happens at a partic-
ular T. Instead of transition hazards, we esti-
mate the cumulative prediction probabilities of
a particular life event in the entire observed tra-
jectory, given the history of the marked point
process. This way of combining information in
multi-state event history models has been called
’survival synthesis’. The innovation gain from

observing a life event at a particular age, related
to the prediction of another life event, can be
quantified and monitored visually.

In sequence analysis, we compare several dis-
similarity measures between the life sequences,
either assuming independence or using some ad
hoc definition of dependence between the sequence
elements. We also contrast data-driven (estimated)
and user-defined costs of substituting one sequence
element with another.

As an example, we study young adults’ tran-
sition to adulthood as a sequence of events in
three life domains (partnership, parenthood and
employment). The events define the multi-state
event history model and the parallel life domains
in the multidimensional sequence analysis.

We conclude that the two approaches com-
plement each other in life course analysis; se-
quence analysis can effectively find typical and
atypical life patterns while event history analy-
sis is needed for causal inquiries.

Keywords: Distance-based data; Life course anal-
ysis, Life history calendar; Multidimensional se-
quence analysis; Multi-state model; Prediction
probability
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ABSTRACT

Оur  long – term experimental study on ant “language” 
and  intelligence  fully  based  on  ideas  of  information 
theory revealed a symbolic language in highly social ant 
species and demonstrated these insects as being able to 
transfer to each other the information about the number 
of objects and can even add and subtract small numbers 
in  order  to  optimize  their  messages.  We  suggest that 
application of ideas of  information theory can open new 
horizons  for studying  numerical competence in  non-
human animals. 

1. INTRODUCTION

Since C. Shannon [1] published his influential paper “A 
mathematical theory of communication”, the 
fundamental role of information theory has been 
appreciated not only in its direct applications, but also in 
robotics, linguistics and biology. Numerical competence 
is one of the main intriguing domains of animal 
intelligence. Recent studies have demonstrated some 
species, from mealy beetles to elephants, as being able to 
judge about numbers of stimuli, including things, and 
sounds, and even smells (see [2] for a review); however, 
we are still lacking an adequate “language” for 
comparative analysis. The main difficulty in comparing 
numerical abilities in humans and other species is that 
our numerical competence is closely connected with 
abilities for language usage and for symbolic 
representation. We suggested a new experimental 
paradigm which is based on ideas of information theory 
and is the first one to exploit natural communicative 
systems of animals [3]. Ants of highly social species are 
good candidates for studying general rules of cognitive 
communication. There are more than 12000 ant species 
on Earth, and the great majority of them use relatively
simple forms of communication such as odour trails, 
tandem running,and so on. Only a few highly social 
species belong to the elite club of rare “cognitive 
specialists”, and among them are several species of red 
wood ants (Formica rufa group), with their big anthills

“boiling” with hundreds of thousands of active 
individuals [4].

2. IDEAS, METHODS AND RESULTS

In  our  experiments  scouts  of  red  wood  ants  were 
required to transfer to foragers in a laboratory nest the 
information about which branch of a special “counting 
maze” they had to go to in order to obtain syrup. The 
main  idea  of  this  experimental  paradigm  is  that 
experimenters can judge how ants represent numbers by 
estimating  how  much  time  individual  ants spend  on 
“pronouncing” numbers,  that  is,  on  transferring 
information  about  index  numbers  of  branches,  that  is, 
the  information  about  which  branch  of  a  special 
“counting  maze”  they  had to go  to in order  to  obtain 
syrup.  The  main  idea  is  that  experimenters  can  judge 
how ants  represent  numbers  by  estimating  how much 
time individual ants spend on “pronouncing” numbers, 
that is, on transferring information about index numbers 
of  branches.  The  findings  concerning  number-related 
skills  in ants are based on comparisons of duration of 
information contacts between scouts and foragers which 
preceded successful trips by the foraging teams.  

It  turned  out  that  the  relation  between  the  index 
number of the branch (j) and the duration of the contact 
between the scout and the foragers (t) is well described 
by the equation 

t = c j + d
for different set-ups which are characterized by different 
shapes, distances between the branches and lengths of 
the branches. The values of parameters c and d are close 
and do not depend either on the lengths of the branches 
or on other parameters. 
     It is interesting that quantitative characteristics of the 
ants’ “number system” seem to be close, at least 
outwardly, to some archaic human languages: the length 
of the code of a given number is proportional to its 
value. For example, the word “finger” corresponds to 1, 
“finger, finger” to the number 2, “finger, finger, finger” 
to the number 3 and so on. In modern human languages 
the length of the code word of a number j is 
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approximately proportional to log j (for large j’s), and 
the modern numeration system is the result of a long and 
complicated development.
      An experimental scheme for studying ants’ 
“arithmetic” skills based on a fundamental idea of 
information theory, which is that in a “reasonable” 
communication system the frequency of usage of a 
message and its length must correlate. The informal 
pattern is quite simple: the more frequently a message is 
used in a language, the shorter is the word or the phrase 
coding it. This phenomenon is manifested in all known 
human languages
     The scheme was as follows. Ants were offered a 
horizontal trunk with 30 branches. The experiments were 
divided into three stages, and at each of them the 
regularity of placing the trough with syrup on branches 
with different numbers was changed. At the first stage, 
the branch containing the trough with syrup was selected 
randomly, with equal probabilities for all branches. So 
the probability of the trough with syrup being placed on 
a particular branch was 1/30. At the second stage we 
chose two “special” branches A and B (N 7 and N 14; N 
10 and N 20; and N 10 and N 19 in different years) on 
which the trough with syrup occurred during the 
experiments much more frequently than on the rest - 
with a probability of 1/3 for “A” and “B”, and 1 /84 for 
each of the other 28 branches. In this way, two 
“messages” -“the trough is on branch A” and “the trough 
is on branch B”- had a much higher probability than the 
remaining 28 messages. In one series of trials we used 
only one “special” point A (the branch N 15). On this 
branch the food appeared with the probability of 1/2, and 
1/58 for each of the other 29 branches. At the third stage 
of the experiment, the number of the branch with the 
trough was chosen at random again.
     The obtained data demonstrated that ants appeared to 
be forced to develop a new code in order to optimize 
their messages, and the usage of this new code has to be 
based on simple arithmetic operations. The patterns of 
dependence of the information transmission time on the 
number of the food-containing branch at the first and 
third stages of experiments were considerably different. 
In the vicinities of the “special” branches, the time taken 
for transmission of the information about the number of 
the branch with the trough was, on the average, shorter. 
    For example, in the first series, at the first stage of the 
experiments the ants took 70–82 seconds to transmit the 
information about the fact that the trough with syrup was 
on branch N 11, and 8–12 seconds to transmit the 
information about branch N 1. At the third stage it took 
5–15 seconds to transmit the information about branch 
N 11.
     Analysis of the time duration of information 
transmission by the ants raises the possibility that at the 
third stage of the experiment the scouts’ messages 
consisted of two parts: the information about which of 
the “special” branches was the nearest to the branch with 
the trough, and the information about how many 
branches away is the branch with the trough from a 
certain “special” branch. In other words, the ants, 

presumably, passed the “name” of the “special” branch 
nearest to the branch with the trough, and then the 
number which had to be added or subtracted in order to 
find the branch with the trough.
        That ant teams went directly to the “correct” branch 
enables us to suggest that they performed correctly 
whatever “mental” operation (subtraction or addition) 
was to be made. 
    It is likely that at the third stage of the experiment the 
ants used simple additions and subtractions, achieving 
economy in a manner reminiscent of the Roman numeral 
system when the numbers 10 and 20, 10 and 19 in 
different series of the experiments, played a role similar 
to that of the Roman numbers V and X. This also 
indicates that these insects have a communication system 
with a great degree of flexibility. Until the frequencies 
with which the food was placed on different branches 
started exhibiting regularities, the ants were “encoding” 
each number (j) of a branch with a message of length 
proportional to j, which suggests unitary coding. 
Subsequent changes of code in response to special 
regularities in the frequencies are in line with a basic 
information-theoretic principle that in an efficient 
communication system the frequency of use of a 
message and the length of that message are related.
    The obtained results show that information theory is 
not only excellent mathematical theory, but many of its 
results may be considered as Nature laws.
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ABSTRACT

Models can be seen as mathematical tools aimed at pre-
diction. The fundamental modeling question is: which
model best generalizes the available data? We discuss the
central ideas of a recently introduced principle for model
validation: Approximation Set Coding (ASC). The prin-
ciple is inspired by concepts from statistical physics and
it is based on information theory. There exists a central
analogy between communication and learning which can
be used to evaluate informativeness by designing codes
based on sets of solutions. These sets are called approx-
imation sets; they should be small enough to be informa-
tive and large enough to be stable under noise fluctuations.
We present the application of ASC to two tasks: cluster-
ing and learning of logical propositions. The two model-
ing tasks highlight the generality of the principle and its
main properties. Experimental results are discussed in the
biological application domain.

1. INTRODUCTION

In the context of modeling, validation constitutes a funda-
mental step. The central question is: which model should
be selected given the data? A justified answer to this ques-
tion requires a precise assessment of the predictive capa-
bility of candidate models.

Our problem definition explicitly considers the case
in which models are defined in terms of cost functions.
This setting is in contrast to the more restrictive (yet still
interesting) one in which a specific cost is given a priori
and the estimation process solely consists of selecting the
best parameters from a set. In our case, model selection
consists of finding the most informative cost. To do that,
we must define and estimate informativeness.

Let us start by introducing cluster model selection as
a motivating example. We define a solution of a cluster-
ing analysis as an assignments of labels to samples. Clus-
tering, hence, produces partitions of the available sample
points. Alternative partitions are evaluated and selected on
the basis of a cost function. The cost function (that is, the
model) is often made explicit, but may also be implicitly
defined in terms of outputs of an algorithmic process. In
applications, the cost function is typically chosen accord-
ing to human intuition and remains fixed for the analysis.
For simplicity, let us now consider a clustering procedure
based on an explicit cost function R(·|X), which evalu-

ates solutions on the basis of the dataset X . Given X ,
the learning process terminates as soon as a (globally or
locally) optimal solution is found. At this point, two im-
portant issues remain open. Is the result informative? Is
the model justified? In order to answer these questions,
we need a precise definition of the modeling goal in terms
of predictive capabilities. There already exist theoretical
and practical answers to these questions. At present, the
set of established principles and procedures for predictive
modeling include Minimum Description Length [1], Kol-
mogorov Structure Function [2], BIC [3] & AIC [4], Min-
imum Message Length [5], Solomonoff’s Induction [6,
7], PAC [8] and PAC-Bayesian generalization bounds [9].
These approaches are based on convincing justifications
from information theory, algorithmic information theory,
probability and statistical learning theory.

The discussion of the individual merits of these ap-
proaches is certainly of great interest and value but goes
beyond the scope of this contribution. We focus on the re-
cently introduced idea of Approximation Set Coding [10].
ASC shares the spirit of the mentioned approaches, but
with a rather different goal: selecting models by mea-
suring the informativeness of equivalence classes of so-
lutions.

2. APPROXIMATION SET CODING

ASC selects the optimal quantization of the hypothesis
class to find the set of hypotheses constituting the best
tradeoff between informativeness and stability. The in-
formal justification is the following. On the one hand,
selecting very few solutions exposes the modeler to the
danger of instability with respect to fluctuations induced
by noise [11]. On the other hand, selecting many solu-
tions yields stable but rather uninformative results. With
minimalistic assumptions about the nature of the noise, it
is possible to select the set of solutions which provides the
best tradeoff between informativeness and stability. This
optimal set constitutes the best approximation available
for a model. Models are then compared in terms of their
informativeness, finally yielding the optimal approxima-
tion set.

Let us now start by formalizing the central concepts.
Consider a cost model R(c|X), which evaluates the cost
of choosing solution c ∈ C(X) to generalize the given
dataset X ∈ X . As conventional in statistical learning
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theory, the smaller the cost, the better is the quality of
the solution. The set of all candidate solutions is defined
as the hypothesis class C(X), which is given to the mod-
eler. Depending on the application, individual solutions
might be parametric (with variable parameters) or simple
elements from a set. In both cases, each element c of the
hypothesis class indicates a particular and fixed candidate
solution. Different cost functions define different models
(for instance R1(c|X) and R2(c|X)); for the rest of the
manuscript, we identify models with their respective cost
function. Our task is then to evaluate a set of models and
select the best one, that is the most predictive. For each
cost model R(·|X) and a given dataset, the optimal solu-
tions are provided by the set of empirical minimizers

C⊥(X) = arg min
c∈C(X)

R(c|X). (1)

Since costs are evaluated as a function of the data, we must
take into account the variability with respect to X . In or-
der to perform this step, we consider the minimal case
in which two datasets (each of size n) are available to the
modeler. The extension to settings with a larger number of
sample sets is straightforward and exhibits analogous re-
sults. We assume that two datasets X1 and X2 are drawn
independently from the same distribution. Since the hy-
pothesis class might also depend on the dataset, we need
a way to map solutions from C(X1) to C(X2). Tranfer-
ring solutions between instances is a necessary require-
ment to evaluate the generalization properties from train-
ing to test data. For that, we introduce the mapping func-
tion ψ : C(X1)→ C(X2).

By mapping the solutions from one dataset to another,
ψ allows the modeler to map solutions across instances
(for instance, by mapping to the nearest neighbor). For ev-
ery subset of solutionsA ⊆ C(X1), we denote the mapped
subset as

ψ ◦A = {ψ(a), a ∈ A} ⊆ C(X2). (2)

In case of noise, the set of mapped empirical minimizers
do not necessarily coincide with the solutions induced by
the second dataset. The intersection ψ◦C⊥(X1)∩C⊥(X2)
might be small or even empty. In fact, fluctuations in the
data might induce perturbations in the empirical minimiz-
ers, which will tend to diverge from each other as the noise
level increases. Instead of taking the two sets of empiri-
cal minimizers (to avoid inconsistency due to instability),
we consider larger sets of solutions. These sets are called
approximation sets and are defined as a function of a pa-
rameter γ so that

Cγ(Xi) = {c ∈ C(Xi) : R(c|Xi) ≤ R⊥(Xi) + γ} (3)

for i = 1, 2. These sets are γ-close to the solution costs
R⊥(Xi) := R(c⊥i |Xi) of the respective empirical mini-
mizers c⊥i ∈ C⊥(Xi), i = 1, 2. At this point, the question
is which γ should we select? For γ = 0 we get only the
empirical minimizers. If γ is too small, the results are
unstable. For too large γ, the selection tends to include
all the entire hypothesis class (thus yielding uninformative

results). The communication analogy is introduced to ad-
dress this question. It is based on the sender-receiver sce-
nario in which distinguishing individual solutions based
on data corresponds to transmitting messages over a noisy
channel. The communication capacity reflects the ability
to discriminate solutions through the applied transforma-
tions. Ultimately, the success of the communication de-
pends on noise level and coding strategy.

The communication process for a certain γ is described
by the following procedures:

• Coding:

1. Sender and receiver agree on R and share X1.

2. They both calculate the γ-approximation sets.

3. The sender generates a set of tranformations
Σ = {σ : X → X} which define a set of
training optimization problems R(·|σ ◦ X1)
and their respective γ-approximation sets.

4. The sender sends Σ to the receiver which cal-
culates the approximation sets for each trans-
formation.

• Transmission:

1. The sender is a stationary source: it selects a
transformation σs as message without directly
revealing it to the receiver.

2. The transformation σs is applied by the sender
to X2.

3. The transformed dataset σs ◦X2 is sent to the
receiver.

4. The receiver has to reconstruct the transforma-
tion σs from the approximation set of σ ◦X2

without directly knowing X2 and σs.

Each transformation σs generated by the sender is es-
timated by the receiver through the decoding rule

σ̂ = arg max
σ∈Σ

|ψ ◦ Cγ(σ ◦X1) ∩ Cγ(σs ◦X2)| . (4)

Decoding is possible because, in contrast to σs and X2,
σs ◦X2 is known to the receiver. It can be used to calcu-
late the approximation sets used to uniquely identify σs.
The aim is the following: achieving optimal communica-
tion (which is reliable and informative). Approximation
sets define codebook vectors; while large γ correspond to
small sets of distinct vectors for coding, small γ might
correspond to higher error rates for decoding.

Communication errors are due to wrong decoding, that
is when σ̂ 6= σs. The probability of a communication error
is hence given by

P (σ̂ 6= σs|σs) = P

(
max

σj∈Σ\{σs}
|∆Cjγ | ≥ |∆Csγ |

∣∣∣∣σs) ,
(5)

where, for all σj ∈ Σ,

∆Cjγ = ψ ◦ Cγ(σj ◦X1) ∩ Cγ(σs ◦X2) (6)

16



Figure 1. Comparson of the informativeness of pairwise clustering (left) and correlation clustering (right) in terms of
AC for gene expression data. The former is approximately four times more informative than the latter. For correlation
clustering, the mutual information is estimated by mean-field approximation and Gibbs sampling for comparison.

denotes the intersection between the j-th approximation
set and that of the test set.

The direct evaluation of the error probability can be
bounded through the union bound as follows:

P (σ̂ 6= σs|σs) ≤
∑

σj∈Σ\{σs}
P

(
|∆Cjγ | ≥ |∆Csγ |

∣∣∣∣σs) ,
(7)

Furthermore, one has that

P (σ̂ 6= σs) ≤ (|Σ| − 1) exp (−nIγ(σs, σ̂)) , (8)

where Iγ(σj , σ̂) is the mutual information

Iγ(σs, σ̂) =
1
n

log
( |Σ| |∆Csγ |
|Cγ(X1)| |Cγ(X2)|

)
. (9)

The optimal γ is found solving

γ∗ = arg max
γ∈[0,∞)

Iγ(σs, σ̂). (10)

This procedure provides to the modeler:

• a set of γ-optimal solutions, as well as

• a measure of the informativeness of the selected ap-
proximation set for the model R: the Approxima-
tion Capacity (AC) I∗γ(σs, σ̂).

This selection criterion enables the comparison of differ-
ent models R for the cost of selecting solutions c given
training and test.

3. APPLICATIONS AND RESULTS

Recently, ASC has been applied to perform model se-
lection in clustering [12], yielding results consistent with
BIC in the analysis of biological data. In clustering, Σ
corresponds to the set of permutations of cluster labels. It
is worth noting that in the case of clustering the cardinal-
ity of the hypothesis class grows exponentially with the
sample size. This is because solutions are defined as label
assignments in this application.

Experimental results in the context of gene expression
analysis show that pairwise clustering [13] yields superior

amounts of reliable information in comparison to corre-
lation clustering [14]. Relational clustering problems are
often defined with respect to an attributed graph (V, E)
with vertex set V and edge set E . The vertices have to be
clustered into groups Gu := {i : c(i) = u}, 1 ≤ u ≤ K
where c is the cluster solution which assigns label u to
the i-th sample. The set of edges between elements of
group Gu and Gv is denoted by Euv := {(i, j) : c(i) =
u ∧ c(j) = v}.

In both cases, the datasets consisted of matrices of
pairwise similaritiesX . The pairwise clustering cost model
is defined as

Rpc(c,X) = −1
2

K∑
k=1

|Gk|
∑

(i,j)∈Ekk

Xij

|Ekk| , (11)

where Xij denotes the similarity between object i and j.
The correlation clustering model is

Rcc(c,X) =
1
2

∑
1≤u≤K

∑
(i,j)∈Euu

(|Xij | −Xij)

+
1
2

∑
1≤u≤K

∑
1≤v<u

∑
(i,j)∈Euv

(|Xij |+Xij).

Figure 1 shows the application to gene expression data
with temporal structure (expression level time points for
12 consecutive months) [15]. The feature vector is split-
ted into two and the similarity matrices are constructed by
taking the Pearson correlation coefficients for each pair of
genes (295 differentially expressed genes). This dataset
has been selected because it is one of the many cases in
which the choice of a cost is challenging. The figure com-
pares the AC of the two models, showing the advantage of
pairwise clustering over correlation clustering. The result
means that under identical noise effects, pairwise cluster-
ing discovers a more predictive structure than correlation
clustering. ASC validates pairwise clustering (maxβ Iβ =
1.03, where β is the inverse computational temperature)
as approximately 3.5 times more informative than corre-
lation clustering (maxβ Iβ = 0.272). At the optimal reso-
lution (temperature), 7 clusters are discovered by pairwise
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Figure 2. Calculation of mutual information and approxi-
mation sets for the Boolean case. On the left, the mutual
information is calculated exactly and with the Boltzmann
approximation (left top and bottom, respectively). The
green line identifies the optimal computational tempera-
ture (no normalization). On the right, the model is eval-
uated for the two split datasets over the hypothesis class
(decimal indexing of the Boolean outputs). The green dot
indicates the membership of the data generator.

clustering (in contrast to the 2 clusters identified by corre-
lation clustering). The number of clusters in pairwise clus-
tering is also consistent with that obtained with BIC (with
number of parameters calculated as the ratio between the
trace and the largest eigenvalue of the similarity matrix).

To learn logical propositions we define the hypothe-
sis class of Boolean functions of d literals. We consider
both the supervised and the unsupervised case. In contrast
to clustering, Σ is given by the set of distinguishable bit-
wise flips of the data (in input for the unsupervised case,
and in both input and output in the supervised case). The
set of transformations is therefore given by a set of local ¬
(NOT) operators applicable to the available sample com-
ponents. Hence, in the unsupervised case the cardinality
of the set of perturbations is smaller or equal to that of the
hypothesis class:

|Σ| ≤ |C(X)| = 22d

. (12)

The goal is the identification of predictive formulas which
generalize the available binary observations. Figure 2 com-
pares the exact solution and Boltzmann approximation with
a dataset generated by the 110-th Boolean function with
d = 3 subject to uniform sampling of the input. The bit
flipping probability is 1/8 both for input and for output.
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ABSTRACT
It is shown how to construct asymptotically consistent ef-
ficient algorithms for various statistical problems concern-
ing stationary ergodic time series. The considered prob-
lems include clustering, hypothesis testing, change-point
estimation and others. The presented approach is based on
empirical estimates of the distributional distance. Some
open problems are also discussed.

1. INTRODUCTION

Statistical problems involving time-series data arise in a
variety of modern applications, including biology, finance,
network analysis, etc. These applications often dramat-
ically violate traditional statistical assumptions imposed
on time series. This applies not only to parametric mod-
els, but even to assumptions that are often considered non-
parametric, for example that the data points are indepen-
dent or that the time series have limited memory, or that
the processes mix sufficiently fast and so on.

Here I summarize some recent work on statistical anal-
ysis of time series where the only assumption on the time
series is that they are stationary ergodic. No independence
or mixing-type assumptions are involved.

The considered problems are hypothesis testing, clus-
tering, the two- and thre-sample problems, and change
point estimation. The main results establish asymptoti-
cally consistent algorithms for the considered problems.
The consistency results follow from the simple fact that
the so-called distributional distance [1] can be estimated
based on sampling; this contrasts previous results that show
that the d̄ distance can not (in general) be estimated for
stationary ergodic processes [2]. For more details on these
results see [3, 4, 5, 6, 7].

2. PRELIMINARIES

Let A be an alphabet, and denote A∗ the set of tuples
∪∞i=1A

i. In this work we consider the case A = R; exten-
sions to the multidimensional case, as well as to more gen-
eral spaces, are straightforward. Distributions, or (stochas-
tic) processes, are measures on the space (A∞,FA∞),
where FA∞ is the Borel sigma-algebra of A∞. When
talking about joint distributions of N samples, we mean
distributions on the space ((AN )∞,F(AN )∞).

For each k, l ∈ N, let Bk,l be the partition of the set
Ak into k-dimensional cubes with volume hkl = (1/l)k

(the cubes start at 0). Moreover, define Bk = ∪l∈NBk,l

and B = ∪∞k=1B
k. The set {B × A∞ : B ∈ Bk,l, k, l ∈

N} generates the Borel σ-algebra on R∞ = A∞. For a set
B ∈ B let |B| be the index k of the set Bk that B comes
from: |B| = k : B ∈ Bk.

We use the abbreviation X1..k for X1, . . . , Xk. For a
sequence x ∈ An and a set B ∈ B denote ν(x, B) the
frequency with which the sequence x falls in the set B.

ν(x, B) :={
1

n−|B|+1

∑n−|B|+1
i=1 I{(Xi,...,Xi+|B|−1)∈B} if n ≥ |B|,

0 otherwise.

A process ρ is stationary if

ρ(X1..|B| = B) = ρ(Xt..t+|B|−1 = B)

for anyB ∈ A∗ and t ∈ N. We further abbreviate ρ(B) :=
ρ(X1..|B| = B). A stationary process ρ is called (station-
ary) ergodic if the frequency of occurrence of each word
B in a sequence X1, X2, . . . generated by ρ tends to its a
priori (or limiting) probability a.s.:

ρ( lim
n→∞ ν(X1..n, B) = ρ(B)) = 1.

Denote E the set of all stationary ergodic processes.

Definition 1 (distributional distance). The distributional
distance is defined for a pair of processes ρ1, ρ2 as fol-
lows (e.g. [1])

d(ρ1, ρ2) =
∞∑

m,l=1

wmwl
∑

B∈Bm,l

|ρ1(B)− ρ2(B)|,

where wj = 1/j2.

(The weights in the definition are fixed for the sake
of concreteness only; we could take any other summable
sequence of positive weights instead.) In words, we are
taking a sum over a series of partitions into cubes of de-
creasing volume (indexed by l) of all sets Ak, k ∈ N,
and count the differences in probabilities of all cubes in
all these partitions. These differences in probabilities are
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weighted: smaller weights are given to larger k and finer
partitions. It is easy to see that d is a metric. We refer to
[1] for more information on this metric and its properties.

The methods below are based on empirical estimates
of the distance d:

d̂(X1
1..n1

, X2
1..n2

) =
∞∑

m,l=1

wmwl
∑

B∈Bm,l

|ν(X1
1..n1

, B)− ν(X2
1..n2

, B)|, (1)

where n1, n2 ∈ N, ρ ∈ S , Xi
1..ni

∈ Ani . Although the
expression (1) involves taking three infinite sums, it will
be shown below that it can be easily calculated (see Sec-
tion 4).

3. ASYMPTOTIC CONSISTENCY RESULTS

The consistency results are based on the following state-
ment, which is quite easy to derive from the definition of
ergodicity (or from Birkhoff’s ergodic theorem).

Lemma 1 (d̂ is consistent). Let ρ1, ρ2 ∈ E and let two
samples x1 = X1

1..n1
and x2 = X2

1..n2
be generated by a

distribution ρ such that the marginal distribution ofXi
1..ni

ρi is stationary ergodic for i = 1, 2. Then

lim
n1,n2→∞

d̂(X1
1..n1

, X2
1..n2

) = d(ρ1, ρ2) ρ–a.s.

3.1. The three-sample problem

The first problem we consider is the three-sample prob-
lem, also known as process classification. Let there be
given three samplesX = (X1, . . . , Xk), Y = (Y1, . . . , Ym)
and Z = (Z1, . . . , Zn). Each sample is generated by a
stationary ergodic process ρX , ρY and ρZ respectively.
Moreover, it is known that either ρZ = ρX or ρZ = ρY ,
but ρX 6= ρY . We wish to construct a test that, based on
the finite samples X,Y and Z will tell whether ρZ = ρX
or ρZ = ρY .

The proposed test chooses the sample X or Y accord-
ing to whichever is closer to Z in d̂. That is, we define the
test G(X,Y, Z) as follows. If d̂(X,Z) ≤ d̂(Y, Z) then
the test says that the sample Z is generated by the same
process as the sample X, otherwise it says that the sample
Z is generated by the same process as the sample Y.

Theorem 1. The described test makes only a finite num-
ber of errors with probability 1, when |X|, |Y | and |Z| go
to infinity.

The statement is easy to derive from Lemma 1. Note
that X,Y, Z are not required to be independent. All we
need is that the distributions are stationary ergodic (more
formally, the distribution generating the three sequences
is arbitrary except for the fact that the marginals are sta-
tionary ergodic).

3.2. Time-series clustering

A more general but closely related problem is time-series
clustering. We are given N samples x1, . . . ,xN , where

each sample xi is a string of length ni of symbols fromA:
xi = Xi

1..ni
. Each sample is generated by one out of k dif-

ferent unknown stationary ergodic distributions ρ1, . . . , ρk ∈
E . Thus, there is a partitioning I = {I1, . . . , Ik} of the set
{1..N} into k disjoint subsets Ij , j = 1..k

{1..N} = ∪kj=1Ij ,

such that xj , 1 ≤ j ≤ N is generated by ρj if and only if
j ∈ Ij . The partitioning I is called the target clustering
and the sets Ii, 1 ≤ i ≤ k, are called the target clusters.
Given samples x1, . . . ,xN and a target clustering I , let
I(x) denote the cluster that contains x.

It is required to partition the index set {1..N} in such
a way that as the length of each sequence grows the par-
titioning coincides with the target clustering from some
time on with probability 1. Such an algorithm is called
asymptotically consistent. In other words, when the se-
quences are long enough, we have to group together those
and only those sequences that were generated by the same
distributions.

This can be done as follows. The point x1 is assigned
to the first cluster. Next, find the point that is farthest away
from x1 in the empirical distributional distance d̂, and as-
sign this point to the second cluster. For each j = 3..k,
find a point that maximizes the minimal distance to those
points already assigned to clusters, and assign it to the
cluster j. Thus we have one point in each of the k clus-
ters. Next simply assign each of the remaining points to
the cluster that contains the closest points from those k
already assigned. One can notice that the described algo-
rithm just one iteration of the k-means algorithm, with so-
called farthest-point initialization and using the distance d̂.

Theorem 2. The described algorithm is strongly asymp-
totically consistent provided ρi is stationary ergodic for
each i = 1..k.

3.3. Change-point estimation

Next we consider the change-point problem. The sam-
ple Z = (Z1, . . . , Zn) consists of two concatenated parts
X = (X1, . . . , Xk) and Y = (Y1, . . . , Ym), where m =
n− k, so that Zi = Xi for 1 ≤ i ≤ k and Zk+j = Yj for
1 ≤ j ≤ m. The samplesX and Y are generated indepen-
dently by two different stationary ergodic processes with
alphabet A = R. The distributions of the processes are
unknown. The value k is called the change point. It is as-
sumed that k is linear in n; more precisely, αn < k < βn
for some 0 < α ≤ β < 1 from some n on.

It is required to estimate the change point k based on
the sample Z.

Note that we do not assume that the single-dimensional
marginals before and after the change point are different,
as is done almost exclusively in the literature on this prob-
lem. We are in the most general situation where the time-
series distributions are different, i.e. the change may be
only in the long-range dependence.

For each t, 1 ≤ t ≤ n, denoteU t the sample (Z1, . . . , Zt)
consisting of the first t elements of the sample Z, and de-
note V t the remainder (Zt+1, . . . , Zn).
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Define the change point estimate k̂ : A∗ → N as fol-
lows:

k̂(X1, . . . , Xn) := argmaxt∈[αn,n−βn] d̂(U t, V t).

The following theorem establishes asymptotic consis-
tency of this estimator.

Theorem 3. For the estimate k̂ of the change point k we
have

1
n
|k̂ − k| → 0 a.s.

where n is the size of the sample, and when k, n−k →∞
in such a way that α < k

n < β for some α, β ∈ (0, 1)
from some n on.

This result can be extended [7] to multiple change
points and unknown α and β, although the algorithm be-
comes much more sophisticated.

3.4. Impossibility results: the two-sample problem and
its implications

For the problems considered above we have relatively sim-
ple algorithms that are asymptotically consistent under most
general assumptions. What is more, the proofs of consis-
tency (although mostly omitted here) are quite simple as
well. From this one can get the impression that asymptotic
consistency results are very easy to obtain and probably
they hold for all other interesting problems as well.

This is not the case. The first example is another clas-
sical statistical problem: homogeneity testing, also known
as the two-sample problem. We are given two samples
X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) generated by
two stationary ergodic distributions ρX and ρY . We want
to tell whether they were generated by the same or by dif-
ferent distributions, that is, whether ρX = ρY . We are
willing to settle for a rather weak asymptotic result. Say
a two-sample test L(X,Y ), that takes two samples and
outputs 0 or 1, is asymptotically consistent if EL → 1 as
n → ∞ if ρX = ρY and EL → 0 otherwise. Moreover,
we can further assume that the samples are binary-valued
and there is no dependence between X and Y . This does
not help:

Theorem 4. There is no asymptotically consistent two-
sample test.

This result holds even if we additionally require ρX
and ρY to be B-processes [5], contrasting earlier results
of Ornstein and Weiss for this class of processes [2]. The
proof (omitted here) relies on a counterexample which is a
limit of hidden Markov processes with a countably infinite
state space, using a method similar to that of [8].

As a consequence of this negative result, we can also
derive impossibility results for some generalizations of the
problems considered above.

Corollary 1. Under the assumptions of theorems 2 and
3 respectively, there is no asymptotically consistent clus-
tering algorithm when the number of clusters is unknown,
and there is no asymptotically consistent change-point de-
tection algorithm.

3.5. Hypothesis testing

Some of the problems considered above, as well as many
other interesting problems, cab be formulated in the fol-
lowing way. Consider two sets H0 and H1 which are sub-
sets of the set of all stationary ergodic processes, and let
there be given a sample X1, . . . , Xn generated by a sta-
tionary ergodic process distribution ρ. We want to tell
whether ρ ∈ H0 or ρ ∈ H1. The problem arises to char-
acterize those pairs (H0, H1) for which this is possible
in some asymptotic sense, that is, whether asymptotically
consistent tests exists. It turns out that the distributional
distance can be used to answer this question to a consid-
erable extent.

To define the notion of consistency we use for this
problem, recall that Type I error is said to occur if the
test says “1” while the sample was generated by the dis-
tribution from H0. Type II error occurs if the test says “0”
while H1 is true. In many practical situations, these errors
may have very different meaning: for example, this is the
case when H0 is interpreted as that a patient has a certain
ailment, and H1 that he does not. In such cases, one may
wish to treat the errors asymmetrically. AlsoH0 can often
be much simple than the alternative H1, for example, H0

can be a simple parametric family, or it may consist of just
one process distribution, whileH1 can be the complement
of H0 to the set of all stationary ergodic processes.

Call a test consistent if, for any pre-specified level α ∈
(0, 1), any sample size n and any distribution in H0 the
probability of Type I error (the test saysH1) is not greater
than α, while for every distribution in H1 and every α the
Type II error is made only a finite number of times with
probability 1, as the sample size goes to infinity.

Recall that a stationary process can be represented as a
mixture of stationary ergodic processes, that is, as a mea-
sure on the set E (see, e.g., [1]). The set E is not closed
with respect to the distributional distance, but the set S of
all stationary process distributions is. The following the-
orem utilizes these facts. Its proofs relies in addition on
some other nice properties of the metric space (S, d); see
[6] for the proof and [1] for the properties of (S, d).

Theorem 5. There exists a consistent test for H0 against
H1 if H0 has probability 1 with respect to ergodic de-
composition of every distribution from the closure of H0,
where the closure is with respect to the distributional dis-
tance d. Conversely, if there is a consistent testH0 against
H1 then H1 has probability 0 with respect to ergodic de-
composition of every distribution from the closure of H0.

The necessary and sufficient conditions coincide ifH1

is the complement of H0 to the set E of all stationary er-
godic process distributions:

Corollary 2. There exists a consistent test for H0 against
H1 := E\H0 if and only if H1 has probability 0 with re-
spect to ergodic decomposition of every distribution from
the closure of H0.
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4. COMPUTATIONAL COMPLEXITY

While the definition of empirical distributional distance d̂
involves taking infinite sums, in can be calculated not only
in finite time but efficiently. To see this, first observe that
in d̂ all summands corresponding to m > n (where n is
the min length of x1, x2) are 0. In the sum over l (cube
size) all the summands are the same from the point where
each cube has at most one point in it. This already makes
computations finite. Moreover, even though the number of
cubes in Bm,l is exponential in m and l, at most 2n cubes
are non-empty and these are easy to track (across differ-
ent values of cube size l) with a tree structure. Thus, d̂ can
be calculated as is (in a naive way) in time O(n2s log n)
where s is the minimal non-zero distance between points.
This can be further reduced: the summands form > log n
and for l such that each cube less than log n points have
no chance to have consistent estimates and only contribute
(a negligible part) to the error. Thus, it is only practical to
truncate the sums at log n; since all the theoretical results
presented here are asymptotic in n, it is easy to check that
they still hold with this modification of d̂. The computa-
tional complexity of d̂ becomesO(npolylog n). For more
information on implementation of the resulting algorithms
see [9]. The latter work also provides some empirical eval-
uations of the clustering algorithm described here, as well
as theoretical results for the online version of this prob-
lem.

5. OUTLOOK

Here we mention some interesting open problems for fu-
ture research. First, the characterisation of those hypothe-
ses for which consistent tests exist is so far incomplete:
the necessary and sufficient conditions coincide only in
the case whenH1 is the complement ofH0 (cf. Theorem 5
and the corollary). Furthermore, one can consider other
notions of consistency of tests, both weaker and stronger
ones, such as requiring both probabilities of error to con-
verge to 0, or requiring both errors to be bounded uni-
formly. An interesting statistical problem that we did not
consider here is independence testing. Given two samples
it is required to test whether they were generated indepen-
dently or not. Given the negative result of Theorem 4, one
could think that this problem is also impossible to solve.
However, Theorem 5 implies that it is, in fact, possible.
Finding an actual test (possibly using d̂) is an interesting
open problem.
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ABSTRACT

In previous contributions to WITMSE, [1] and [2], an ab-
stract theory of cognition, inspired by information theory
but going beyond classical Shannon theory in certain re-
spects was outlined. See also [3]. Here, we continue the
work by presenting three concrete problems: Sylvester’s
problem from geometric location theory, a problem of uni-
versal coding from information theory and the problem of
isotone regression from statistics. At first, we focus on
non-technical, philosophically oriented considerations. A
more complete analysis of isotone regression follows and
finally we point out a surprising connection between this
problem and the one from universal coding.

1. THREE PROBLEMS

First geometry: In 1857 Sylvester wrote “It is required to
find the least circle which shall contain a given system of
points in the plane.” In fact, this is the full text of [4]!
Thus, ifX denotes the set of points in the plane,‖ · − · ‖
Euclidean distance andP ⊆ X a given system – here
assumed finite – of points inX , we seek a pointy = y∗ in
X which minimizes the quantity

max
x∈P

‖x− y‖. (1)

For the two remaining problems,Ω = (Ω,≤) denotes
a finite partially ordered set provided with aweight func-
tion W . Little is lost if you takeW to be the uniform dis-
tribution (and this will be assumed if no special mention
of W is made). A real-valued functionf on Ω is isotone
if, for a, b ∈ Ω, the implicationa ≤ b ⇒ f(a) ≤ f(b)
holds. Andf is antitoneif −f is isotone.

The problem from information theory which we shall
deal with concerns themodelA of all antitone probability
distributions overΩ. Requested is the distributiony = y∗

which best representsA in the sense that

sup
x∈A

D(x‖y) (2)

is minimized. HereD stands forKullback-Leibler diver-
gence, i.e. D(x‖y) =

∑
a∈Ω x(a) ln x(a)

y(a) . This is a prob-
lem ofuniversal prediction.

The corresponding problem ofuniversal codingis to
find a suitablecode length function(in the sequal simply
acode), κ∗, which can be taken as the base for actual cod-
ing of observations from a source emitting independent
outputs fromΩ, generated by a distribution known only
to lie inA. Appealing to standard information theoretical
insight, the soughtuniversal codeis κ∗ given fromy∗ by
κ∗(a) = ln 1

y∗(a) for a ∈ Ω (the good sense of this also
involves an idealization and a replacement of logarithms
to the base 2 with natural logarithms). Our codes satisfy
Kraft’s equality:

∑
a∈Ω exp

(− κ(a)
)

= 1.

As our final problem we takeisotone least squares
regression(below just isotone regression), an important
problem from statistics. Given is a real-valued function
y0 on Ω, referred to as avaluation. Sought is the isotone
valuationy = y∗ which is closest in mean-squared norm
to the given valuationy0. Thus, we should minimize

‖y0 − y‖2 =
∑
a∈Ω

W (a)|y0(a)− y(a)|2 (3)

subject to a requirement ony of isotonicity. Just as with
the two previous problems, existence and uniqueness of
the sought object is pretty evident. We refer to it as the
isotone regression ofy0 (or just theisotone regression).

2. A COMMON FRAMEWORK

There exists a common framework which allows an ef-
ficient treatment of problems as those presented and of
many others – e.g. from information theory, one could
point to problems of maximum entropy determination, in-
formation projections and capacity determination. The
reader is referred to [1] and [2] (or to a more compre-
hensive study, not yet in final form). Rather than spending
time here on technicalities, we shall emphasize some fea-
tures of the underlying theory as seen in the light of the
three problems above.

The problems presented are alloptimization problems.
The first two are quite similar, technically. Euclidean dis-
tance stands out for the first, Kullback-Leibler divergence
for the second. One should, however, note that optimiza-
tion as in (1) and (2), does not uniquely tell us which
are the basic quantities as any strictly increasing func-
tion of the appearing quantities could also be used. As we
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shall argue below – and not all that surprising – squared
Euclidean distance is adequate for the first problem and
Kullback-Leibler divergence itself for the second.

A guiding principle for the choice of appropriate ba-
sic quantities is that – as recognized since long in opti-
mization theory and convex analysis – one benefits from
treating along with a given problem, also adual problem.
For this to work out conveniently, one needs certain strict
relationships to hold which essentially involve conditions
of linearity or affinity. Theoretically, introductory consid-
erations can be carried out without imposing such strict
conditions, cf. [1] and [2]. However, when it comes to
actually treating concrete problems of interest, you need
to be more specific.

In order to motivate necessary restrictions for a suc-
cessful model building, we claim that the “two-ness” of
duality considerations is best expressed by choosing a game-
theoretical setting involving certain asymmetrictwo-person
zero-sum games. For these games, the players have quite
different roles. The first player, considered female, is con-
ceived as “Nature” . Nature chooses a strategy which re-
flects “truth” , whereas the second player is a much more
easily understood being, “you” or “ Observer” – a mere
mortal person, male we reckon, seeking the truth but re-
stricted to “belief” . Analyzing these thoughts, you find
that though tempting to imagine Nature as a rational be-
ing reflecting “absolute truth” , really, this is naive and
what is involved is more sensibly thought of as another
side of yourself. The “zero-sumness” of the games you
are led to consider express an insight consistent with ideas
of Jaynes from the mid-fifties, cf. [5], viz. that acting in a
way which would contradict the zero-sum character would
reflect that “you have known something more” and, there-
fore, your model building would be incomplete and should
be adjusted.

An essential restriction in our model building then is
that the games considered should, typically, be inequilib-
rium, i.e. theminimaxandmaximinvalues should coin-
cide. In many cases this is not so at first sight. E.g., for the
two first problems, where a minimax-value is sought, we
find that the corresponding maximin-value is uninforma-
tive, indeed it vanishes identically. This may be remedied
if suitable extensions of the allowed strategise for Nature
can be deviced. For the two problems pointed to, this can
be achieved by allowingrandomized strategiesfor Nature
(and, regarding (1), replacing norm by squared norm). In
this way a common game theoretical base for the treat-
ment of these problems can be found. This also applies to
the third problem, though it is of a different type. There it
pays to consider the given valuationy0 as a parameter, cf.
Section 3.

One has to be realistic as to what can be expectecd
of a common theoretical base. In fact, though problems
we are able to deal with typically have unique solutions,
e.g. none of the three concrete problems considered allow
solutions in closed form. One has to be satisfied with nu-
merical algorithms or turn to special cases where solutions
can be written down in closed form or, more realistically,

where finite state algorithms of low complexity leeds to
the solution. Such algorithms are special. Often Galois
theory shows that even rather “small” problems have so-
lutions which cannot be expressed quantitatively using the
basic algebraic operations applied to the natural quantita-
tive specifications of the problems.

Thus, an appeal to game theory does not in itself lead
to solutions of the problems at hand. But it does help to
characterize what is required of a solution. Such results
of identificationare often derived from an application of
thesaddle-value inequalitiesnow associated with Nash’s
name. An example of this follows in the next section.

The overall theme of our investigations, that of estab-
lishing a useful theoretical base going “beyond Shannon” ,
has been pursued by several authors in one way or another
and appears right now to be gaining momentum, cf. also
[6]. Shannon himself was aware of the need to broaden
the theory he had initiated, e.g., in 1953 he writes “It is
hardly to be expected that a single concept of information
would satisfactorily account for the numerous possible ap-
plications of this general field” , cf. [7].

3. ISOTONE REGRESSION

Let us leave the airy considerations of the foregoing sec-
tion and turn to a closer study of isotone regression. The
key to a game-theoretical formulation is the binary func-
tion U|y0 = U|y0(x, y) given by

U|y0(x, y) = ‖x− y0‖2 − ‖x− y‖2 . (4)

This is interpreted as theupdating gain, when theprior
y0 is updated by Observers choice of theposteriory, as-
suming that the strategy chosen by Nature isx. In (4), x
runs over the setX of all isotone valuations. These are
the strategies of Nature. The strategies of Observer may
be taken to be the set of all valuations, but it may also be
restricted toX .

If Nature choosesx, the best response by Observer is
also to choosex. The resulting value ofU|y0 will then
be‖x − y0‖2 and it follows that theoptimal strategyfor
Nature is to choose the sought isotone regression.

Comparing with Section 3 of [2], you realize that all
conditions stated there are fulfilled. In particular, the squared
norm satisfies thecompensation identity(13) of [2]. From
Theorems 2 and 3 of [2], it follows that Nature and Ob-
server both have unique optimal strategiesx∗ andy∗ and
that these strategies coincide:x∗ = y∗. A key problem
is, therefore, to determine this commonbi-optimal strat-
egy. A suitable result of identification for this problem
will now be derived.

Let x∗ = y∗ be a given isotone valuation, from the
outset not known to be the sought bi-optimal strategy. Then,
by the general theory, thisis the sought strategy if and only
if the non-trivial part of Nash’s inequalities holds:

U|y0(ξ, y
∗) ≥ ‖x∗ − y0‖2 for everyξ ∈ X . (5)

Expressing squared norm via the associated inner prod-
uct defined by〈f, g〉 =

∑
a∈Ω W (a)f(a)g(a), and recall-

ing that y∗ = x∗, we transform the requirement to the
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condition

〈ξ − x∗, x∗ − y0〉 ≥ 0 for everyξ ∈ X . (6)

For the further analysis, we note that any valuationf
induces a special decomposition ofΩ, denotedSf . The
sets inSf are themaximal connected sets off -constancy,
i.e. the connected subsets ofΩ on whichf assumes the
same value and which are maximal with respect to these
properties. Further, we note that in casef is isotone, the
sets inSf are partially ordered in a natural way, viz. by
definingA < B to mean that, firstly,A 6= B and, sec-
ondly, thata < b for some(a, b) with a ∈ A andb ∈ B.

Any valuationf is specified by the decompositionSf

and the associated function values. For the isotone regres-
sion only the decompositionS∗ = Sx∗ needs to be speci-
fied as the function values can then be identified ascondi-
tional averages. Indeed, denoting byA|y0 (or simplyA)
the conditional average of the priory0 overA, i.e.

A =
∑
a∈A

W (a|A)y0(a) =
1

W (A)

∑
a∈A

W (a)y0(a) , (7)

then, for the isotone regressionx∗,

for all A ∈ S∗, x∗ = A onA . (8)

In fact, this is easy to prove by a differential argument
based on the considerations of valuations obtained from
x∗ by varying the value onA and keeping other values
fixed. The argument can be refined, yielding another cen-
tral property ofS∗, boundedness. This is the property, that
for eachA ∈ S∗ and eachlower setL which intersectsA
– a lower set being a set such thata < b ∈ L implies
a ∈ L – it holds that

A|y0 ≤ A ∩ L|y0 . (9)

Theorem 1 (Identification) Letx be a valuation with as-
sociated decompositionS and associated function-values
α(A); A ∈ S. Then a necessary and sufficient condition
thatx = x∗, the sought isotone regression ofy0, is that the
following conditions hold: (i) [ordering]:S is partially
ordered; (ii) [monotonicity]: if A, B ∈ S and A < B,
thenα(A) < α(B); (iii) [proper values]: α(A) = A|y0

for eachA ∈ S and (iv) [boundedness]: for everyA ∈ S
and every lower setL which meetsA, (9) holds.

Proof A proof that the stated conditions are necessary
was indicated above. In order to establish sufficiency, as-
sume that the conditions hold. The essential point is to
establish the validity of (6). An indication has to suffice:
First, write the inner product in (6) as a sum and then split
the sum in a sum over each of the classes inS. For the
essential argument we may assume thatS = {Ω}. Con-
sider a fixed isotone valuationξ. Let α0 < · · · < αn be
the values assumed byξ and writeξ in the form

ξ = αn −
n∑

i=1

(αi − αi−1)1{ξ<αi} . (10)

Consider the valuationδ defined by

δ(a) = W (a)
(
Ω|y0 − y0(a)

)
. (11)

Then
∑

a∈Ω δ(a) = 0 and
∑

a∈L δ(a) ≤ 0 for each lower
setL. By (10) it follows that

∑
a∈Ω ξ(a)δ(a) ≥ 0 , which

is the required result.�
A discussion is in order. The reasoning demonstrates

that though Nash’s inequalities in principle contain the es-
sentials, this may be in a somewhat concealed form and
require quite a bit of extra work until a transformation into
a manageable form has been obtained. We may also note
that though the identification result is easy to use in exam-
ples of moderate size – see, e.g. the butterfly set discussed
in Figures 1 and 2 – the necessary checking of condition
(iv) of Theorem 1 may be forbidding for more elaborate
partially ordered sets as the number of lower sets may be
of exponential size in the number of parameters necessary
to specify the partial order.

Thus one should ask for further results aiming at the
actual construction of the isotone regression. Often, thisis
not feasible but, fortunately, the problem dealt with is one
for which satisfactory results exist, cf. [8] and references
referred to there, especially [9].

The problem is greatly simplified if we restrict atten-
tion to tree-like structures. We shall assume from now on
thatΩ is aco-tree, i.e. right sections are well ordered (or,
equivalently, the reverse partial ordering is a tree). This
is a significant simplification. For one thing, lower sets
can then be represented as disjoint unions of left sections,
thus the checking involved in the identification theorem
is feasible, as only left sections need to be checked when
checking the boundedness property.

Without being very specific, the existence of an ef-
ficient algorithm for the determination of the isotone re-
gression is indicated below. The ideas are contained in
the identification theorem. As it turns out, if you focus
on all propertiesexceptboundedness and aim at construc-
tion of the classes inS∗ “from below” , then an argu-
ment (not shown here) will reveal the fact that bounded-
ness is verified automatically. The build-up from below
exploits the idea of searching for violation of the mono-
tonicity requirement followed by pooling of adjacent al-
ready constructed classes if a violation occurs. This idea
is well known from the statistical literature on isotone re-
gression and there referred to aspooling of adjacent viola-
tors (PAV). The example of a linear ordering as displayed
in Figure 3 explains better than many words how the in-
tended algorithm works. And generalizing to a arbitrary
co-tree presents no further problems.

4. A SURPRISING CONNECTION

Consider again the problem of universal coding. The as-
sumption, still in force, thatΩ is a co-tree, implies that the
modelA is a simplex with the uniform distributions over
left sections as extremal elements. Denote bya↓ the left
section determined bya, byN(a) the number of elements
in a↓ and byUa the uniform distribution overa↓. Further,
let a− be the set of immediate predecessors ofa.
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Figure 2. Isotone regression for the butterfly, depending
on the value of the parametert.

It is easy to check that there exists a distributionQ, not
necessarily isotone, such thatD(Ua‖Q) i s independent of
a. Indeed,Q is proportional toµ given by

µ(a) =
∏

b∈a− N(b)N(b)

N(a)N(a)
, a ∈ Ω . (12)

Theorem 2 Lety0 be the valuation given by

y0(a) = ln
1

µ(a)
; a ∈ Ω , (13)

and denote byy∗ the isotone regression ofy0. Then the
universal codeκ∗ is obtained fromy∗ by normalization,
i.e., for a suitable constant,c, κ∗(a) = y∗(a) + c for
everya ∈ Ω.

This follows, in a rather roundabout manner, by com-
paring [10] with results from isotone regression. A more
direct proof may well exist.

The special distributionQ with constant divergence to
a set of elements which generate the relevant model may
be called aSylvester point. It is easy to see that the uni-
versal predictor can be obtained as the information pro-
jection ofQ on the modelA. Analogous features apply to
Sylvester’s problem, though the existence of a Sylvester
point in that setting is only possible in very special cases,
e.g. for the illuminating case of a three-element modelP .
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ABSTRACT

We are concerned with the issue of detecting changes of
statistical models when they change over time. We intro-
duce the dynamic model selection (DMS) algorithm for
learning model sequences on the basis of the minimum
description length (MDL) principle. We first analyze it
from the view of hypothesis testing. We evaluate error
probabilities for testing the occurrences of change-points
and relate them to the model transition estimators and the
distance between the models to be distinguished. We then
apply the DMS algorithm into data compression via piece-
wise stationary memoryless sources (PSMS’s). We give a
method for discretizing the parameter space to obtain an
optimal data compression bound. From the both views of
hypothesis testing and data compression, we argue how
to discretize the parameter space in order to obtain ideal
performance. It yields a new view of distinguishability
of probabilistic models from the standpoint of change-
detection.

1. INTRODUCTION

We are concerned with the issue of detecting changes of
probabilistic models from a non-stationary data sequence.
Dynamic model selection, which we abbreviate as DMS,
has been proposed in [14],[13](see also [3]) in order to ad-
dress this issue. DMS algorithms have been designed on
the basis of the minimum description length (MDL) prin-
ciple ([8]). I.e., they output a model sequence so that the
sum of the code-length for a data sequence plus that for a
model sequence is minimum. DMS is related to works
by van Erven et.al.[2] on switching distributions, those
by Shamir and Merhav [10], Willems [11],Willems and
Casadei [12] on data compression for piecewise station-
ary memoryless sources (PSMSs).

In this paper we first analyze DMS from the view of
hypothesis testing. We apply DMS to the issue of testing
whether a change-point of statistical models exists or not,
and evaluate it in terms of Type 1 and 2 error probabili-
ties, which depend on how to estimate model transitions.
We investigate them for the three types of methods for es-
timating model transition probabilities: Shamir and Mer-
hav’s method [10], Krichevsky and Trofimov’s one [6],
and Willem’s one [11],[12].

We then apply DMS to data compression. We derive
upper bounds on the total code-length for the three meth-

ods for estimating model transitions. We also apply DMS
to learning piecewise stationary memoryless sources
(PSMSs[9]) and analyze it from the view of data compres-
sion. According to [4], we give a method for discretiz-
ing the parameter space in order to get an optimal code-
length bound. From the both views of hypothesis testing
and data compression, we argue how to discretize the pa-
rameter space to obtain ideal performance. This yields a
new insight into distinguishability([1],[8]) of probabilistic
models from the view of change-detection as well as data
compression.

2. DYNAMIC MODEL SELECTION

Following .[14],[13] we introduce a framework for DMS.
LetX be a domain, which may be either continuous or dis-
crete. Letx take a value inX . LetM be a class of models,
each of which is specified by a discrete parameter and is
properly ordered. For example, we may consider the case
whereM ∈ M is a dimension of real-valued parameters.
We denotex1 . . . xt−1 asxt−1. Let P (Xn|M) be a prob-
ability distribution specified by a modelM . For eachM ,
for eacht, we define a predictive distribution ofX given
xb

a by P (X|xt−1 : M) = P (X · xt−1|M)/P (xt−1|M).
We suppose that a model switches to neighboring ones

with some probabilities at each time. According to [14],
we consider model transition probability distributions:

Definition 1 Let M range over{1, . . . , M̄}. Let α be a
1-dimensional parameter. Assuming that a model transits
to neighbouring ones only, we define themodel transition
probability distributionas: P (M1|∅ : α) = 1/M̄,

P (Mt|M t−1 : α) =

8>><>>:
1− α if Mt = Mt−1, Mt 6= 1 or M̄,

1− α/2 if Mt = Mt−1, Mt = 1 or M̄,

α/2 if |Mt −Mt−1| = 1,

0 otherwise.
Here are three methods for estimatingα.

Definition 2 Shamir and Merhav’s (SM) estimator̂α is
defined as follows[10]: Forε > 0,

α̂(M t) =
π(t− tc + 1)
Z∞ − Zt−tc

, (1)

wheretc is the latest change point beforet andπ(t) =
1

t1+ε , Zn =
∑n

j=1 π(j), Z∞ =
∑∞

j=1 π(j). Krichevsky
and Trofimov’s (KT) estimator̂α is defined as follows[6]:

α̂(M t) = (n(M t) + 1/2)/t, (2)
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wheren(M t) is the number of model changes inM t.
Willem’s (W) estimator̂α is defined as follows[11]:

α̂(M t) = 1/(2(t− tc)), (3)

wheretc is the latest change-point beforet.

KT estimator is calculated using all the past data, while
SM and W estimators are calculated using the data starting
from the latest change-point.

We denoteP (Mt|M t−1 : α̂(M t−1)) asP̂t(Mt|M t−1).
Below we give a criterion for selecting an optimal se-
quence on the basis of the MDL principle.

Definition 3 [14] Given xn = x1 . . . xn, we define the
DMS criterionfor Mn = M1 . . .Mn by:

`(xn : Mn) =

nX
t=1

`− log P (xt|xt−1 : Mt)
´

+
nX

t=1

“
− log P̂t(Mt|Mt−1)

”
. (4)

The first term is the total predictive code-length for
xn relative toMn while the second term is the total pre-
dictive code-length forkn. Hence the optimal sequence is
obtained as the one which minimizes the total code-length.
It leads to the DMS algorithm as follows:

Definition 4 [14] The DMS algorithm, denoted as DMS,
is an algorithm that takes as inputxn and outputsM̂n s.t.

M̂n = arg min
Mn

`(xn : Mn). (5)

An algorithm that computeŝMn as in (5) using the
dynamic programming has been proposed ([14]).

3. HYPOTHESIS TESTING WITH DMS

We simplify the problem of DMS so that there are only
two models;M1 andM2. We are then concerned with the
issue of testing whether a model has changed or not. Be-
low we assume that the model is eitherM1 or M2, the ini-
tial model isM1, and there exists only one change-point
in a model sequence. The problem is to detect when the
model has changed. We give the following specific form
of DMS in order to solve this issue.

Definition 5 DMS as a change-point detectoris an algo-
rithm that takes as inputxn and outputs the least time in-
dextc such that

`(xn : Mn
1 ) ≥ `(xn : Mn(tc)), (6)

whereMn(tc)
def=

tc︷ ︸︸ ︷
M1 . . .M1

n−tc︷ ︸︸ ︷
M2 . . .M2 andMn

1
def= M1 . . .M1.

We reduce the change-detection problem to the hy-
pothesis testing as follows: Lett∗ be a true change-point.
Consider the following two hypotheses:H0 andH1:

H0 : M1 for xn
1 = xn = x1 · · ·xn,

H1 :

(
M1 for xt∗

1 = x1 · · ·xt∗ ,

M2 for xn
t∗+1 = xt∗+1 · · ·xn.

SetP (xn
t∗+1|xt∗ : M1)

def=
∏n

j=t∗+1 P (xj |xj−1 : M1),

andP (xn
t∗+1|xt∗ : M2)

def=
∏n

j=t∗+1 P (xj |xj−1 : M2).Then

DMS as a change-point detector works as a hypothesis
testing algorithm such thatH0 is accepted if

nX
t=t∗+1

(− log P (xt|xt−1 : M1))

−
nX

t=t∗+1

(− log P (xt|xt−1 : M2)) < f(n, t∗), (7)

where
f(n, t∗) def

= `(Mn(t∗))− `(Mn
1 ), (8)

and

`(Mn
1 )

def
=

nX
t=1

(− log P̂t(M1|M1)),

`(Mn(t∗)) def
=

t∗−1X
t=1

(− log P̂t(M1|M1)) + (− log P̂t∗(M2|M1))

+
nX

t=t∗+1

(− log P̂t(M2|M2)).

OtherwiseH1 is accepted.
We define as measures of performance of a change-point de-

tector Type 1 and 2 error probabilities as follows:

Definition 6 For given the length of data sequencen, the change-
point timet∗, we defineType 1 error probabilityfor DMS as a
change-point detector by:

Prob
ˆ
xn

t∗+1 ∼ P (Xn|M1) and Eq.(7) doesn′t hold
˜
,

andType 2 error probabilityfor DMS at delayh = n− t∗ by:

Prob
h
xn

t∗+1 ∼ P (Xn
t∗+1|xt∗ : M2) and Eq.(7) holds

i
.

Type 1 error probability is the probability that the model
change has not yet occurred until timen but the change is incor-
rectly reported at timet∗. Type 2 error probability is the proba-
bility that the model change has already occurred at timet∗, but
it is overlooked until timen whereh = n−t∗ is detection delay.

We make the following assumption forM1 andM2.

Assumption 7 Suppose that for some0 < K < ∞,for anyX,
| log P (X|Mi)| ≤ K for i = 1, 2 and that for some0 < V <
∞ the variance of the random variableVj = log P (Xj |Xj−1 :
M2)/P (Xj |Xj−1 : M1) with respect toP (Xj |Xj−1 : M2) is
upper-bounded byV for anyj.

We give the following theorem on Type 1 and 2 error proba-
bilities for general cases.

Theorem 8 For DMS as a change-point detector, we have

Type 1 error probability ≤ 2−f(n,t∗). (9)

Let us define theKullback-Leibler divergence(the KL-divergence)
betweenP (Xh|xt∗ : M2) andP (Xh|xt∗ : M1) by

Dh(M2||M1)|xt∗

def
=

X
Xn

t∗+1

P (Xn
t∗+1|xt∗ : M2) log

P (Xn
t∗+1|xt∗ : M2)

P (Xn
t∗+1|xt∗ : M1)

.

Under Assumption 7, ifDh(M2||M1)|xt∗ > f(n, t∗) holds, for
some0 < C < ∞, we have

Type 2 error probability ≤ 2 exp
`−Chβ2

h

´
, (10)

where
βh

def
=

1

h
(Dh(M2||M1)|xt∗ − f(n, t∗)) , (11)
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Theorem 8 shows that Type 1 error probability for DMS is
always upper-bounded by the exponential in the negativef(n, t∗),
which is determined by only the code-lengths for model transi-
tion. We also see that Type 2 error probability for DMS de-
cays in orderO(exp(−hβ2

h)), where the exponent factor de-
pends on the code-length for model transition as well as the KL-
divergence betweenM2 andM1. The larger the KL-divergence
minusf(n, t∗) is, the smaller Type 2 error probability is. The
largerf(n, t∗) is, the smaller Type 1 error probability is while
the larger Type 2 error probability is. The balance between Type
1 and 2 error probabilities depends on how to estimate model
transition probability distributions. We have the following corol-
laries for the respective model transition estimators.

Corollary 9 Let the values off(n, t∗) as in (8) for SM estima-
tor, KT estimator and W estimator befSM (n, t∗), fKY (n, t∗),and
fW (n, t∗), respectively. Then they are given as follows:

fSM (n, t∗) = log Z∞t∗(1+ε) + log

„
h + 1

h + 1 + ε

«„
h + 1

n

«εff
,

fKT (n, t∗) = log(2(t∗ + h)− 1),

fW (n, t∗) = log
(n− 1/2)hh!

nh(h− 1/2)h
+ log(2t∗ − 1),

where(n − 1/2)h = (n − 1/2)(n − 3/2) · · · (t∗ + 1/2) and
nh = n(n− 1) · · · (t∗ + 1).

We may see that for fixedt∗, for sufficiently largeh for suf-
ficiently smallε > 0,

fKT (n, t∗) > fSM (n, t∗) > fW (n, t∗). (12)

This implies that Type 1 error probability becomes small in this
order while Type 2 error probability becomes large in this order.

4. DATA COMPRESSION WITH DMS

4.1. Data Compression

When we apply DMS of Definition 4 into data compression, we
have the following theorem on its total code-length:

Theorem 10 For anyxn, the total code-length for DMS, which
we denote as̀(xn), is upper-bounded as follows:

`(xn) ≤ min
m

min
t0,...tm

min
M(0),...M(m)


log |M|+ F (n, m)

+
mX

j=0

tj+1X
t=tj+1

`− log P (xt|xt−1 : Mt)
´ff

, (13)

where t0 = 0 < t1 <, . . . , < tm < tm+1 = n denote
change-points,m is the number of change-points,M(j) ∈ M
is the model at[tj , tj+1) (i = 0, . . . , m), and the minimum is
taken under the condition that|M(j) − M(j + 1)| ≤ 1 (j =
0, . . . , m − 1). F (n, m) is code-length for a model sequence
M(0)..M(0)M(1).....M(m). For SM estimator, KT estimator,
and W estimator, we denoteF (n, m) asFSM (n, m), FKT (n, m),
andFW (n, m), respectively. They are expanded as follows:

FSM (n, m) = m log
n

m
+ ε(m + 1) log

n

m + 1

+ (m + 1) log(1 + ε)−m log
ε

2
,

FKT (n, m) = (n− 1)H

„
m

n− 1

«
+

1

2
log(n− 1)

+ (m + 1) log 2,

FW (n, m) =
3m

2
log

n

m
+

1

2
log n + (2m− 1) log 2 + m,

whereH(x) = −x log x− (1− x) log(1− x).

For eachm, for any sufficiently largen, for sufficiently
small ε > 0, the following relation holds among SM, KT, and
W:

FSM (n, m) < FKT (n, m) < FW (n, m). (14)

4.2. Learning PSMSs

Let X be either discrete or continuous. LetF = {p(x; θ) :
θ ∈ Θ} be a parametric class of probability distributions (or
probability mass functions) whereΘ is a parameter space. We
suppose that eachxt of xn = x1 . . . xn ∈ Xn is independently
generated according to a class of probability distributions with
m + 1 piecewise constant parameters as follows:8>>><>>>:

xt ∼ p(x; θ(0)) (1 ≤ t ≤ t1),

xt ∼ p(x; θ(1)) (t1 + 1 ≤ t ≤ t2),
...

xt ∼ p(xt; θ(m)) (tm + 1 ≤ t ≤ n),

(15)

where0 < t1 < t2 < · · · < tm < n (t0 = 0, tm+1 = n) is a
sequence of change-points and eachθ(j) ∈ Θ (j = 0, . . . , m)
andθ(j) 6= θ(j + 1) (j = 0, . . . , m− 1). We call such a source
apiecewise stationary memoryless source(PSMS) [7],[9].

We consider any lossless data compression algorithmA, which
takes as inputxn and outputs a lossless compressed data se-
quence. We denote the total code-length forxn usingA as
LA(xn). We define as a measure for the goodness ofA the
expected redundancyas follows:

Definition 11 For any lossless data compression algorithmA,
for a given PSMS as in (15), we define theexpected redundancy
for A by

Rn
A

def
= E

24L(xn)−
mX

j=0

tj+1X
t=tj+1

`− log p(xt; θ(j))
´35 ,

where the expectation is taken with respect to (15).

Merhav[7] derived the following lower bound on the ex-
pected redundancy.

Theorem 12 [7] Suppose that the domainX is finite. Supposing
that each datum is independently generated according to almost
any PSMS with fixedm as the number of change-points and fixed
k as the degrees of freedom of each parameter, and under other
some conditions for anyε > 0 and sufficiently largen, we have

inf
A
Rn
A ≥ (1− ε)

„
k(m + 1)

2
log n + m log n

«
. (16)

In the case whereΘ is 1-dimensional and compact, Kanazawa
and Yamanishi[4] applied DMS to develop an algorithm that
asymptotically matched (16).Below we introduce their approach.
The key ideas of their algorithm are summarized as follows:

1) Discretization of parameter space:For a given positive
integerK, we discretizeΘ to obtain a finite set of sizeK. Let
us define Fisher information associated withF andLI by

I(θ)
def
= Eθ

»
−∂2 log p(x; θ)

∂θ2

–
, LI

def
=

Z
θ∈Θ

p
I(θ)dθ,

respectively. LettingδI = LI/(K − 1) be a discretization scale
andθ̄1 = θmin, we definēθi so thatZ θ̄i

θ̄1

p
I(θ)dθ = (i− 1)δI (i = 2, . . . , K). (17)
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We haveΘ̄ = {θ̄1, . . . , θ̄K}. We assume that for each interval
θ̄i ≤ θ ≤ θ̄i+1, eitherd

p
I(θ)/dθ ≤ 0 or d

p
I(θ)/dθ ≥ 0.

2)Settings of model transition probabilities:When the model
set is a set of discretized parameters, it may be difficult to as-
sume that the parameter transits to neighbouring ones only as in
Definition 1). In that case, we assume according to [4] that the
parameter value transits according to the following probabilities:

Pr(it | it−1) =

8>><>>:
α

K−1
(it 6= it−1),

1− α (it = it−1).
(18)

where we setK andα as

K = b√nc, α = 1/n.

Under the above setting Kanazawa and Yamanishi [4] pro-
posed an algorithm for learning PSMSs that takesxn as input
and outputs the parameter sequence(θ̄i1 , . . . , θ̄in) wherei1, . . . , in
are those which attain the DMS criterion. Its performance is
summarized in the following theorem:

Theorem 13 [4] Suppose that each datum is independently drawn
according to a PSMS. There exists an algorithmA for which time
complexity isO(n3/2) and the expected redundancy satisfies:

Rn
A <

m + 1

2
log n + m log n +

L2
I

2
+ log e + O(n−1/2). (19)

The bound (19) implies that the expected redundancy for the al-
gorithm asymptotically matches the lower bound (16).

5. DISTINGUISHABILITY

Let us employF = {p(x; θ) : θ ∈ Θ} as a model class of
probability distributions (or probability mass functions) where
Θ is a 1-dimensional real-valued parameter space. We consider
how to discretizeΘ to get a finite subsetΘ. From the argument
in Section 4.2(see 17), we see that if we let the discretization
scaleδ = maxi |θ̄i − θ̄i+1| be

δ = O
“p

1/n
”

(20)

then we have an upper bound on the expected redundancy which
attains Merhav’s lower bound. In this sense the discretization
scale as in (20) is optimal in the scenario of data compression. It
coincides with results in [8],[1].

Meanwhile, let us consider the case where DMS is applied
into change-point detection over a discretized parameter setΘ.
When either SM, KT, W estimator or the uniform model transi-
tion probability as in (18) is employed for model transition esti-
mation, we see from Theorem 8 that Type 2 error probability for
DMS decreases exponentially with respect ton if

min
θ̄( 6=)θ̄′∈Θ

D(θ||θ′) > f(n, t∗)/n = O(log n/n). (21)

Note that for anyθ, θ′ ∈ Θ, we haveD(θ||θ′) = (1/2)I(θ)δ2,
whereδ is the discretization scale. If

δ = O
“p

log n/n
”

(22)

then (21) holds. The discretization scale (22) makes the total
code-length(1/2) log n larger than the bound (19). This im-
plies that (22) doesn’t lead to optimal data compression. Hence
there is a gap between the optimal discretization in the sense of
change-detection and that of data compression. Change-detection
requires more discriminability over the parameter space than data
compression.

6. CONCLUSION

We have applied DMS into the scenarios of change-detection
and data compression for time-varying sources. We have ana-
lyzed the performance of DMS in the both scenarios and have
shown how it is related to model transition estimation. We have
argued how to discretize the real-valued parameter space to ob-
tain optimal performance in the both scenarios. It has turned out
that change-detection may require more discriminability over the
parameter space than data compression.
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ABSTRACT

We are concerned with the issue of detecting changes of
clustering structures from multivariate time series. From
the viewpoint of the minimum description length (MDL)
principle, we introduce an algorithm that tracks changes
of clustering structures so that the sum of the code-length
for data and that for clustering changes is minimum. Here
we employ a Gaussian mixture model (GMM) as repre-
sentation of clustering, and compute the code-length for
data sequences using the normalized maximum likelihood
(NML) coding. The introduced algorithm enables us to
deal with clustering dynamics including merging, split-
ting, emergence, disappearance of clusters from a unify-
ing view of the MDL principle. We empirically demon-
strate using artificial data sets that our proposed method
is able to detect cluster changes significantly more accu-
rately than an existing statistical-test based method and
AIC/BIC-based methods. We further use real customers’
transaction data sets to demonstrate the validity of our al-
gorithm in market analysis.

1. SUMMARY

1.1. Problem Setting

This paper is organized as a brief summary of our recent
paper [1]. We address the issue of clustering multi-variate
data sequences. Suppose that the nature of data changes
over time. We are then specifically interested in track-
ing changes of clustering structures, which we callclus-
tering change detection. We are concerned with the sit-
uation where time series data are sequentially given and
the clustering must be conducted in a sequential fashion.
The main purpose of this talk is to introduce, according to
our recent work [1], a novel clustering change detection
algorithm in the sequential setting. We employ a Gaus-
sian mixture model (GMM) as a representation of clus-
tering and design the algorithm on the basis of the mini-
mum description length (MDL) principle [2]. That is, it
tracks changes of clustering structures so that the sum of
the code-length for data and that for clustering changes is
minimum.

1.2. Previous Works

There exist a number of methods for tracking changes
of clustering structures. For example, Song and Wang
[3] proposed a statistical-test based algorithm for dynamic
clustering. It estimates a GMM in an on-line manner and
then conducts a statistical test to determine whether a new
cluster is identical to an old one or not. If it is, the new
cluster is merged into the older one, otherwise it is rec-
ognized as a cluster which has newly emerged. Sato [4]
proposed an algorithm for merging and splitting of clus-
ters in a GMM based on the variational Bayes method.
Note that changes of clusters are not necessarily classi-
fied into merging or splitting. Siddiqui et.al.[5] proposed
a method of tracking clutering changes using the EM al-
gorithm and Kalman filters. Our work is different from
Siddiqui et.al.’s one in that the former is concerned with
changes of the number of clusters while the latter is con-
cerned with parameter trajectories keeping the number of
clusters fixed.

1.3. Novelty of Our Approach

The novelty of the approach in [1] may be summarized as
follows:

1)An extension of DMS into a sequential clustering
setting:Yamanishi and Maruyama [6, 7] developed a the-
ory of dynamic model selection (DMS) for tracking changes
of statistical models on the basis of the MDL principle.
We extend DMS to the sequential setting to introduce a
sequential DMS algorithm[1]. Every time data is input,
it sequentially detects changes of clustering structures on
the basis of the MDL principle so that the sum of the
code-length for the data and that for the clustering change
is minimum. This algorithm enables us to deal with the
dynamics of clustering structures, including “merging”,
“splitting”, “emergence”, “disappearance”, etc. within a
unified framework from the viewpoint of the MDL princi-
ple.

2)A new application of the NML code-length to se-
quential DMS:In the sequential DMS algorithm,it is cru-
cial how to choose a method for coding. The best choice is
the NML coding since it has turned out to be the optimal
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code-length in the sense of minimax criterion [2]. How-
ever, the normalization term diverges for a multi-dimensional
Gaussian distribution and it is computationally difficult
to straightforwardly compute the NML code-length for a
GMM exactly. Hirai and Yamanishi proposed a method
for efficiently computing the NML code-length for GMMs
[8], inspired by Kontkanen and Myllym̈aki’s work [9] in
which the the efficient computation of the NML code-
lengths for discrete distributions was addressed. They re-
cently modified their method using the renormalizing tech-
nique as in [10], to develop an efficient method for com-
puting the renormalized maximum likelihood code-length
(RNML) for a GMM [11]. We employ the RNML coding
for GMMs in the computation process of the sequential
DMS. This is the first work on the usage of the RNML
coding in the scenario of sequential clustering change de-
tection.

3)Empirical demonstration of the superiority of the se-
quential DMS with the RNML code-length over the ex-
isting methods:Using artificial data sets, we empirically
demonstrate the validity of our method in comparison with
Song and Wang’s method [3], AIC (Akaike’s information
criteria)[12] / BIC (Bayesian information criteria)[13]-based
tracking methods etc. We also use a real data set consist-
ing of customers’ purchase records for a number of kinds
of beers. Tracking changes of clusters of customers leads
to the understanding of how customers’ purchase patterns
change over time and how customers move from clusters
to clusters. This demonstrates the validity of our method
in the area of marketing.
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ABSTRACT

Parsimonious Markov models, a generalization of vari-
able order Markov models, have been recently introduced
for modeling biological sequences. Up to now, they have
been learned by Bayesian approaches. However, there
is not always sufficient prior knowledge available and a
fully uninformative prior is difficult to define. In order to
avoid cumbersome cross validation procedures for obtain-
ing the optimal prior choice, we here adapt scoring criteria
for Bayesian networks that approximate the Normalized
Maximum Likelihood (NML) to parsimonious Markov
models. We empirically compare their performance with
the Bayesian approach by classifying splice sites, an im-
portant problem from computational biology.

1. INTRODUCTION

Classifying discrete sequences is an omnipresent task in
computational biology, where an additional challenge is
limited data. Recently, parsimonious Markov models [1],
a generalization of variable order Markov models [2],
have been proposed to model complex statistical depen-
dencies among adjacent observations while keeping the
parameter space small and thus avoiding overfitting.

Parsimonious Markov models (parsMMs) use parsi-
monious context trees (PCTs), which differ from tradi-
tional context trees [2] in two aspects: (i) a PCT is a bal-
anced tree, i.e. each leaf has the same depth, and (ii) each
node represents an arbitrary subset of the alphabetA, with
the additional constraint that everywhere in the tree, sib-
ling nodes form together a partition of A. An example
PCT, which shows both features, forming a partition of
context sequences that can not be represented by a tradi-
tional context tree, is shown in Figure 1. A PCT τ of depth
d partitions all context sequences of length d over alphabet
A into disjoint sets, which are called context. We denote
all contexts represented by τ as Cτ . An inhomogeneous
parsimonious Markov model of order D for modelling se-
quences of length L allows using different PCTs at each
position in the sequence. The first D positions use PCTs
of increasing order 0, . . . , D − 1, whereas the remaining
L − D positions use PCTs of order D. The likelihood

Figure 1. Example PCT of depth 2 over DNA al-
phabet. It encodes the partitioning of all 16 pos-
sible sequences of length 2 into a set of contexts
Cτ ={{AA},{CA,GA},{TA},{AC,AG,AT,GC,GG,GT},
{CC,CG,CT,TC,TG,TT}}.

function is given by

P (X|~Θ) =
L∏
`=1

∏
w∈Cτ`

∏
a∈A

(θτ``wa)N`wa . (1)

where N`wa is the number of occurrences of symbol a at
position ` in all sequences in data set X, whose subse-
quences from position ` − |w| to ` − 1 are an element of
context w.

The likelihood is closely related to that of Bayesian
networks (BNs), since it factorizes into independent terms
for each variable and the number of conditional proba-
bility parameters depends on the structure of the model.
However, whereas BNs have freedom in choosing the par-
ent nodes of a random variable but always use seperate
conditional probability parameters for each possible real-
ization of the parent nodes, parsMMs have fixed parent
nodes but freedom in lumping several of their possible re-
alizations together as one context.

There is an efficient dynamic programming (DP) al-
gorithm [3, 1] for finding the PCT that maximizes an ar-
bitrary structure score, which only has to fulfil the prop-
erty of factorizing into independent leaf scores. In the
Bayesian setting, the structure score is usually the local
posterior probability of a PCT given data. If the local
parameter prior is a symmetric Dirichlet with equivalent
sample size (ESS) α, we obtain the BDeu score [4], which
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can be used in the DP algorithm since it factorizes along
contexts. The conditional probability parameters are esti-
mated by the mean posterior (MP) principle.

In practice, there is rarely reliable a priori knowledge
available for specifying α. Since it is known that the
choice of α influences the model complexity in the case of
Bayesian networks [5], it is safe to assume that a similar
effect may be observed for parsimonious Markov models.
Often a cross validation (CV) on the training data is used
to obtain a reasonable choice for this external parameter.
However, CV is a time consuming procedure and there is
no guarantee that a useful prior on a subset of the training
data will also yield optimal results when learning from the
complete training data for classifying previously unseen
test instances.

In order to avoid CV, we propose using NML ap-
proximating methods for structure and parameter learn-
ing, which have been initially proposed for BNs, for par-
simonious Markov models. The fNML score [6] has been
suggested as score for structure learning of BNs, whereas
the corresponding conditional probability parameters have
been obtained in the same setting by using fsNML esti-
mates [7]. Due to the structural similarity of the likelihood
function of parsMMs and that of BNs, both methods can
be adapted without modification.

2. RESULTS

We compare two different scores for the PCT structures,
BDeu and fNML, and two different methods for estimat-
ing conditional probability parameters of each PCT, MP
and fsNML. In order to determine whether structure or
parameter learning is dominating the results, we do not
only compare MP parameter estimates for a BDeu optimal
structure with fsNML parameter estimates for an fNML
optimal structure, but also consider the other two possibil-
ities (Table 1).

We perform two seperate case studies. The first study
is a standard classification experiment for short symbolic
sequences, which uses labeled training data and involves
structure and parameter learning for both classes. In com-
putational biology, this an abundant task, when experi-
mentally verified training data is available.

The second study is inspired by the computational
problem of de novo motif discovery [8, 9]. Motif dis-
covery usually involves latent variables, hence it cannot
be solved exactly, and approximate algorithms, such as
the expectation-maximization (EM) algorithm [10] have
to be resorted to. Formulating fNML and fsNML in a set-
ting with latent variables, i.e. utilizing weighted data in-
side the EM algorithm is not straightforward, but a slight
modification of the classification problem resembles the
task that typically arises in those iterative algorithms. In
the modified classification, the structure and parameters
of the background class are fixed and there is much more
background training data available. Hence the prior in the
Bayesian setting only affects the foreground model. This
resembles the problem of motif discovery, where only
structure and parameters of a motif model (foreground)

Table 1. The two combinations in the major diagonal are
the obvious ways of learning parsMMs in the Bayesian
and NML setting respectively, whereas the minor diagonal
contains rather artificial combinations, which we mainly
investigate for academic purposes.

BDeu fNML
MP BDeu-MP fNML-MP
fsNML BDeu-fsNML fNML-fsNML

are to be estimated, whereas the structure and parameters
of the background model remain fixed.

2.1. Standard classification

In the first experiment, we perform a standard classifica-
tion on the benchmark data set of Yeo and Burge [11].
It consists of 12,623 experimentally verified splice donor
sites (foreground data) and 269,157 non splice sites (back-
ground data). Both data sets, consisting of sequences of
length 7 over the quarternary DNA alphabet, were already
split by Yeo and Burge into training and test data at the
ratio of 2:1 [11], and we use the same partitioning.

Since we are interested in situations with limited data,
we randomly pick 500 sequences from each of the training
data sets for learning foreground and background model,
both being second order inhomogeneous parsimonious
Markov models. We learn – for each possible combina-
tion of scores – structure and parameters of two parsimo-
nious Markov models. For the Bayesian scores, we learn
models for a large variety of possible ESS values, ranging
from 10−5 to 108. We repeat the procedure 103 times with
different training samples.

In Figure 2, we compare the average complexities of
the learned models. For the BDeu score, we observe with
increasing ESS an increase in model complexity, which
is a behaviour that is already known from Bayesian net-
works [5]. The fNML score has the advantage of not
being affected by the ESS at all. However, it yields a
comparatively low model complexity for the foreground
model, which is surprising since the foreground data set
is known to contain strong statistical dependencies. The
background model is surprisingly complex, given the fact
that the background data shows much less dependencies.

Additional studies have have shown that the difference
in model complexity of fNML estimated foreground and
background model decreases when both samples sizes are
reduced. The BDeu score, however, retains a certain dif-
ference in model complexity, even when sample sizes are
very small.

However, the PCT structure itself is not sufficient to
compare scoring criteria, since we are mainly interested
in the classification performance of the learned models.
In order to evaluate the classification performance of a
set of PCTs, we estimate conditional probability param-
eters, build a likelihood ratio classifier, compute probabil-
ities for each sequence in both test data sets and compute
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Figure 2. Averaged model complexities (measured as the
total number of leaves in the model) for foreground and
background model are plotted against the equivalent sam-
ple size. Since the fNML criterion does not use the ESS
parameter, the model complexities is constant. Standard
errors are 0.1 at most, hence error bars are omitted from
the plot.

the area under the ROC curve (AUC) [12]. When com-
bining the Bayesian structure and parameter learning, we
apply the same prior to both problems.

For each of the four possible score combinations, we
repeat the entire study with 103 different training sam-
ples and average the resulting AUC values. The results
are shown in Figure 3. We observe an AUC of 0.9691
for the fNML-fsNML method. For an ESS ranging from
101 to 103, the Bayesian approach outperforms fNML-
fsNML method, obtaining a maximal AUC of 0.9708 for
an ESS of 200. Interestingly, an ESS of 1, which is often
considered to be the most uninformative choice, is obvi-
ously not optimal, since performs significantly worse than
larger ESS values and even slightly worse than the NML
approach.

The mixed approach of combining fNML structure
learning with MP parameter estimates also yields a good
classification, if the ESS is chosen correctly. For ESS val-
ues between 10 and 500, it outperforms the pure NML
method, and its absolute maximum with an AUC of
0.9712 at ESS of 100 even outperforms the pure Bayesian
method, even though the difference is quite small.

The BDeu-fsNML method does not show strong over-
or underfitting, but it is even with perfectly chosen ESS
only slightly better than the pure NML method. In gen-
eral, the parameter learning seems to dominate the exper-
iment, since the methods using the same parameter esti-
mate resemble each other more than the methods using
the same structure score.

2.2. Fixed background

In the second experiment, we consider a different set-
ting. Now fix the background model to a simple inde-
pendence model and estimate its parameters once from
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Figure 3. Averaged AUC values for the standard classi-
fication experiment plotted against the equivalent sample
size. In the BDeu-MP setting, the same ESS is used for
structure and parameter learning. For BDeu-fsNML, the
ESS only affects structure learning, whereas for fNML-
MP is only affects parameter learning. Standard errors are
10−4 at most, hence error bars are omitted.

the entire background training data set according to the
maximum likelihood (ML) principle. Since the complete
background data contains over 105 data points, the ML es-
timator is basically identical to fsNML and MP estimates.
The repeated holdout experiment as described in the pre-
vious section is only carried out for the foreground model.
This situation resembles the problem de novo motif dis-
covery [8, 9], where there is orders of magnitude more
data available for learning the parameters of the back-
ground compared to the foreground, and where learning
the background model does not contain a model selection
step.

The results of this modified classification are shown
in Figure 4. We observe the fNML-fsNML approach in
comparison with the BDeu-MP approach to be almost op-
timal. There is only a tiny improvement that the Bayesian
approach may achieve if the ESS would have been cho-
sen perfectly at a value of approximately 20. Interest-
ingly, both mixed approaches perform better than the pure
Bayesian approach, since the range of good ESS values
and the maximal improvement in AUC are increased.

Both methods using the MP parameter estimates break
down if the ESS is larger than 100, which might be ex-
plained as follows. If the foreground parameters are com-
puted by using a large ESS, resulting large pseudocounts,
they get concentrated around the uniform distribution.
This is not a problem as long as the same applies to the
background parameters, since even small differences be-
tween foreground and background parameters are suffi-
cient to classify a test sequence correctly. However, if the
background parameters are fixed to certain values, only
smoothing the foreground parameters creates an imbal-
ance which prevents a fair comparison of foreground and
background likelihood for a test sequence, resulting in
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Figure 4. Averaged AUC values for the classification ex-
periment with fixed background model. The standard er-
rors are below 10−5, hence error bars are omitted.

many classification errors. This situation however, typi-
cally occurs in the problem of de novo motif discovery,
where a motif model is estimated from small data sam-
ples, and where and the background model, it is compared
with, has fixed parameters that may have been estimated
from a much larger amount of data.

3. CONCLUSIONS

We have compared NML with Bayesian criteria for struc-
ture and parameter learning of parsimonious Markov
models with application to the classification of DNA
sequences. In a standard classification, we found the
Bayesian approach to perform well, outperforming the
NML approach for a comparatively large range of ESS
values. We also found the optimal ESS parameter for clas-
sification purposes to be larger than 1, which is often an
intuitive choice, but smaller than 500. In a classification
with fixed background model structure and parameters,
we found the NML approach to be as good as the opti-
mal Bayesian approach. The latter does not yield a sig-
nificant improvement in AUC, even if the optimal value
of the ESS would have been guessed. Moreover, we find
the Bayesian approach in this setting to be very sensitive
towards very large ESS values. This makes it tempting to
speculate that the NML learning approach might be also
of use in the problem of de novo motif discovery, which
includes a classification step with fixed background pa-
rameters.
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cally Minimax Optimal Predictive Modeling with
Bayesian Networks,” in Proceedings of the 12th In-
ternational Conference on Artificial Intelligence and
Statistics, 2009, pp. 504–511.

[8] C.E. Lawrence and A.A. Reilly, “An Expecta-
tion Maximization Algorithm for the Identification
and Characterization of Common Sites in Unaligned
Biopolymer Sequences.,” Proteins: Structure, Func-
tion and Genetics, vol. 7, pp. 41–51, 1990.

[9] T.L. Bailey and C. Elkan, “Fitting a mixture model
by expectation maximization to discover motifs in
biopolymers,” in Proceedings of the Second Interna-
tional Conference on Intelligent Systems for Molec-
ular Biology, 1994, pp. 28–36.

[10] A.P. Dempster, N.M. Laird, and D.B. Rubin, “Max-
imum Likelihood from Incomplete Data via the EM
Algorithm,” Journal of the Royal Statistical Society,
vol. 39, no. 1, pp. 1–38, 1977.

[11] G. Yeo and C.B. Burge, “Maximum Entropy Mod-
eling of Short Sequence Motifs with Applications to
RNA Splicing Signals,” Journal of Computational
Biology, vol. 11(2/3), pp. 377–394, 2004.

[12] Kent A. Spackman, “Signal detection theory: Valu-
able tools for evaluating inductive learning,” in Pro-
ceedings of the Sixth International Workshop on Ma-
chine Learning, San Mateo, CA, 1989, pp. 160–163.

36



CONVEX FORMULATION FOR NONPARAMETRIC ESTIMATION OF MIXING
DISTRIBUTION

Kazuho Watanabe1 and Shiro Ikeda2

1Graduate School of Information Science, Nara Institute of Science and Technology,
8916-5, Takayama-cho, Ikoma-shi, Nara, 630-0192, JAPAN, wkazuho@is.naist.jp

2 The Institute of Statistical Mathematics,
10-3 Midori-cho, Tachikawa-shi, Tokyo, 190-8562 JAPAN, shiro@ism.ac.jp

ABSTRACT
We discuss a nonparametric estimation method of the mix-
ing distribution in mixture models. We propose an ob-
jective function with one parameter, where its minimiza-
tion becomes the maximum likelihood estimation or the
kernel vector quantization in special cases. Generalizing
Lindsay’s theorem for the nonparametric maximum like-
lihood estimation, we prove the existence and discrete-
ness of the optimal mixing distribution and devise an al-
gorithm to calculate it. Furthermore, we show the connec-
tion between the unifying estimation framework and the
rate-distortion problem. It is demonstrated that with an
appropriate choice of the parameter, the proposed method
is less prone to overfitting than the maximum likelihood
method.

1. INTRODUCTION

Mixture models are widely used for clustering and den-
sity estimation. We discuss a nonparametric estimation
method of mixture models where an arbitrary distribution,
including a continuous one, is assumed over the compo-
nent parameter. It was proved by Lindsay [1] that the
maximum likelihood estimate of the mixing distribution
is given by a discrete distribution whose support consists
of distinct points, the number of which is no more than the
sample size. This provides a framework for determining
the number of mixture components from data. The mix-
ture estimation algorithm developed in [2] can be consid-
ered as a procedure for estimating such discrete distribu-
tions. However, it is vulnerable to overfitting because of
the flexibility of the nonparametric estimation.

In this study, we propose a nonparametric mixture es-
timation method defined by minimization of an objective
function with one parameter β. With specific choices of
β, the proposed method reduces to the maximum likeli-
hood estimation (MLE) and the kernel vector quantiza-
tion (KVQ) [3]. Generalizing Lindsay’s theorem for the
nonparametric MLE, we prove the existence and discrete-
ness of the optimal mixing distribution. Then, we provide
an algorithm to calculate the optimal discrete distribution,
that is specifically tailored to the proposed objective func-
tion from the procedure in [2]. Numerical experiments
demonstrate that there exists an appropriate choice of β

in terms of the average generalization error. Furthermore,
we relate the proposed mixture estimation method to the
rate-distortion problem [4] to build insight into the selec-
tion of the width of the component density.

2. MIXTURE MODELLING

Given n training samples, {x1, · · · , xn}, xi ∈ Rd, con-
sider nonparametric estimation of the mixing distribution
q(θ) of the following mixture density of the model p(x|θ)
with parameter θ ∈ Ω,

r(x) = r(x; q) =
∫

p(x|θ)q(θ)dθ. (1)

Let ri = r(xi; q) =
∫

p(xi|θ)q(θ)dθ. We choose q(θ) as
the optimal function of the following problem,

q̂(θ) = argmin
q

Fβ(q),

where

Fβ(q) =

{
1
β log

(
1
n

∑n
i=1 r−β

i

)
, (β ̸= 0)

− 1
n

∑n
i=1 log ri (β = 0).

(2)

The objective function Fβ(q) is continuous with respect
to β ∈ R. This estimation boils down to the MLE when
β = 0 [1]. As β → ∞, it becomes the minimization
of maxi(− log ri), that is, KVQ with the kernel function,
K(x, θ) = p(x|θ) [3]1.

For β ̸= 0, it is also expressed as

Fβ(q) = − 1
β

min
p∈∆

{
β

n∑
i=1

pi log ri +
n∑

i=1

pi log
pi

1/n

}
,

(3)
where ∆ = {p = (p1, p2, · · · , pn)|pi ≥ 0,

∑n
i=1 pi =

1}. This expression is verified through the fact that the
minimum is attained by

pi =
r−β
i∑n

j=1 r−β
j

, (4)

and will be used for deriving a simple learning procedure
in the next section.

1The original KVQ restricts the possible support points of q(θ) to
the training data set {x1, · · · , xn}. That is q(θ) =

∑n
i=1 qiδ(θ−xi),

qi ≥ 0,
∑n

i=1 qi = 1.
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3. OPTIMAL MIXING DISTRIBUTION

3.1. Discreteness of the Optimal Mixing Distribution

We can show the convexity of Fβ with respect to r =
(r1, · · · , rn) for β ≥ −1.

Therefore, for β ≥ −1, there exists a unique r that
minimizes Fβ at the boundary of the convex hull of the
set {pθ = (p(x1|θ), · · · , p(xn|θ))|θ ∈ Ω} where Ω is
the parameter space. From Caratheodory’s theorem, this
means that the optimal r is expressed by a convex com-
bination,

∑k
l=1 qlpθl

, with ql ≥ 0,
∑k

l=1 qk = 1 and
k ≤ n, indicating that the optimal mixing distribution is
q(θ) =

∑k
l=1 qlδ(θ − θl), the discrete distribution whose

support size is no more than n.

3.2. Learning Algorithm

The KKT condition for the optimal q(θ) is given by µ(θ) ≤
1 for all θ where

µ(θ) =
n∑

i=1

αip(xi|θ), (5)

and

αi =
r−β−1
i∑n
j=1 r−β

j

. (6)

Hence the mixing distribution q(θ) can be optimized by
Algorithm 1 which sequentially augments the set of the
support points until the maximum of µ(θ) approach 1 [2].

Algorithm 1 Decoupled Approach to Mixture Estimation

1: Initialize k = 0 and αi = 1/n and prepare a small
positive constant ϵ.

2: repeat
3: Let θ̂k = argmax

θ
µ(θ) and k = k + 1, where µ(θ)

is given by eq.(5).
4: Define the discrete distribution, qk(θ) =∑k

l=1 πlδ(θ − θ̂l). Optimize {πl, θ̂l}k
l=1 by

minimizing Fβ(qk).
5: Compute {αi}n

i=1 by eq.(6) with ri =∑k
l=1 πlp(xi|θ̂l).

6: until maxθ µ(θ) < 1 + ϵ holds.

3.3. EM Updates for Finite Mixtures

Eq.(3) is equivalent to a weighted sum of negative log-
likelihood and an EM-like algorithm is available for the
optimization of {πl, θ̂l}k

l=1 in Step 4. Its updating rule is
obtained as follows,

π
(t+1)
j =

n∑
i=1

p
(t)
i νij , and θ̂

(t+1)
j =

∑n
i=1 p

(t)
i νijxi∑n

i=1 p
(t)
i νij

,

where p
(t)
i = r

(t)−β
i∑n

j=1 r
(t)−β
j

, r
(t)
i =

∑k
l=1 π

(t)
l p(xi|θ̂(t)

l )

and

νij =
π

(t)
j p(xi|θ̂(t)

j )∑k
m=1 π

(t)
m p(xi|θ̂(t)

m )
(7)
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Figure 1. Example of the estimated mixture for β = −0.2
and σ2 = 1. Corresponding mixing distributions are illus-
trated in the x-y planes where the location and the height
of the red lines are respectively the mean parameter θ̂l and
the weight π̂l of each component.

is the posterior probability that the data point xi is as-
signed to the cluster center θ̂l.

We can prove for β ≤ 0 that the above update mono-
tonically decreases the objective Fβ since this minimiza-
tion is expressed by the double minimization over {πl, θ̂l}k

l=1

and {pi}n
i=1 from eq.(3). However, the similar proof does

not apply for β > 0. Hence, we switch to another update
rule for β > 0, which is omitted in this paper.

4. EXPERIMENTS

In this section, we demonstrate the properties of the esti-
mation method by a numerical simulation focusing on the
case of 2-dimensional Gaussian mixtures where

p(x|θ) =
1

2πσ2
exp

(
−||x− θ||2

2σ2

)
. (8)

We generated synthetic data by the true distribution,

p∗(x) =
1
2
N(x|θ∗1 , I2) +

1
2
N(x|θ∗2 , I2), (9)

where θ∗1 = (0, 0)T , θ∗2 = (4, 4)T and N(x|θ, σ2I2) =
1

2πσ2 exp
(
− ||x−θ||2

2σ2

)
is the Gaussian density function.

We assumed that the kernel width σ2 in eq.(8) was
known and p(x|θ) was set to N(x|θ, I2). Let q̂(θ) be an
estimated mixing distribution. The optimal mixing distri-
bution q(θ) is given by 1

2δ(θ−θ∗1)+ 1
2δ(θ−θ∗2) in this case.

An example of the estimated mixture model for β = −0.2
and σ2 = 1 is demonstrated in Figure 1.

Figure 2(a) and Figure 2(b) respectively show the train-
ing error, 1

n

∑n
i=1 log p∗(xi)∫

p(xi|θ)q̂(θ)dθ
, and the generaliza-

tion error, 1
ñ

∑ñ
i=1 log p∗(x̃i)∫

p(x̃i|θ)q̂(θ)dθ
, for test data {x̃i}ñ

i=1

generated from the true distribution (9). All results were
averaged over 100 trials for different data sets generated
by (9). The number of training data is n = 50 and that of
test data is ñ = 200000. We also applied the original ver-
sion of the algorithm in [2], where only {πl} are updated
by the EM algorithm with the weight pi in eq.(4) for each
sample in Step 4. These results are indicated as “means
fixed”. We see that the average training error takes the
minimum at β = 0 as expected while the average gener-
alization error is minimized around β = −0.2.
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Figure 2. Training error (a), generalization error (b) and maximum error (c) against β. The error bars show 95% confidence
intervals.

Figure 2(c) shows the average of the maximum er-
ror, maxi

(− log
∫

p(xi|θ)q̂(θ)dθ
)−maxi (− log p∗(xi)),

which corresponds to the objective function of the KVQ.
As expected, the monotone decrease of it with respect to
β implies the estimation approaches the KVQ as β →∞.

In Figure 3, we show the number of estimated compo-
nents remaining after the elimination of components with
sufficiently small mixing proportions (less than 1

n2 ). Since
it strongly depends on ϵ, we also applied hard assignments
to cluster centers for each data point and counted the num-
ber of hard clusters, which is also plotted in Figure 3.
Here, each point xi is assigned to the cluster center θ̂l that
maximizes the posterior probability (7). The number of
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Figure 3. Number of components (cross) and number of
hard clusters (asterisk) against β.

components k̂ as well as that of hard clusters increase as
β becomes larger. This reduces the average generaliza-
tion error when β takes slightly negative value as we just
observed in Figure 2(b).

5. CONNECTION TO RATE-DISTORTION
PROBLEM

The rate-distortion (RD) problem encoding the source ran-
dom variable X with density p∗(x) to the output Θ is re-
formulated to solving the following optimization problem

[4, 5],

inf
q
−

∫
p∗(x) log

∫
q(θ) exp(sd(x, θ))dθdx. (10)

Here d(x, θ) is the distortion measure and s is a Lagrange
multiplier. It provides the slope of a tangent to the RD
curve and hence has one-to-one correspondence with a
point on the RD curve. This problem reduces to the MLE
(Fβ(q) when β = 0) with p(x|θ) ∝ exp(sd(x, θ)) if
the source p∗(x) is replaced with the empirical distribu-
tion. In the case of the Gaussian mixture with d(x, θ) =
||x− θ||2, s specifies the kernel width by σ2 = − 1

2s .
For general β, the expression (3) and the optimal out-

put distribution q̂(θ) =
∑k̂

l=1 π̂lδ(θ − θ̂l) imply the RD
function of the source,

∑n
i=1 piδ(x− xi), with the rate

n∑
i=1

k̂∑
l=1

piνil log
νil∑n

j=1 pjνjl
,

and the average distortion

n∑
i=1

k̂∑
l=1

piνild(xi, θ̂l),

where νil is the posterior probability defined by eq.(7).
Since the rate is the mutual information between X and Θ,
it is bounded from above by the entropy,−∑k̂

l=1 π̂l log π̂l

and further by log k̂. However, the source depends on pi,
which depends on q(θ) as in eq.(4) and hence the above
pair of rate and distortion does not necessarily inherit prop-
erties of the usual RD function such as convexity.

Figure 4 demonstrates examples of RD functions ob-
tained by the minimization of Fβ(q) for β = −0.2, β = 0
and β = 0.5 in the case of the Gaussian mixture used in
Section 4.

The three curves show similar behavior such as a mono-
tone decreasing trend although only that for β = 0.5 loses
convexity. This suggests the usage of the RD curve for
determining the kernel width σ2, e.g., by prespecifying a
desired rate or average distortion. If we keep the desired
rate or distortion to determine σ2 for different choices of
β, then β can be chosen among them for example by CV.
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(a) Rate-distortion curve for β = −0.2.
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(c) Rate-distortion curve for β = 0.5.

Figure 4. Examples of rate-distortion curves. The lines with slope s passing through the point corresponding to s (cross)
are also illustrated for s = −0.5 (magenta) and s = −2.0 (blue). The rate is scaled by log 2 to yield bits.

6. EXTENSION TO OTHER CONVEX
OBJECTIVE FUNCTIONS

The proposed algorithm in Section 3.2 is based on the
decoupled approach developed in [2]. The general ob-
jective function considered in [2] includes the MLE and
the KVQ to estimate q(θ). We proved in Section 3.1 by
extending Lindsay’s theorem that the estimated q(θ) is a
discrete distribution consisting of distinct support points
no more than n, the number of training data. This state-
ment can be generalized to other objective functions as
long as they are convex with respect to r = (r1, · · · , rn)
and hence to q(θ). More specifically, the following four
objective functions are demonstrated as examples in [2].
Here, ρ = mini ri and C is a constant.

1. MLE: −∑n
i=1 log ri

2. KVQ: −ρ

3. Margin-minus-variance:
−ρ + C

n

∑n
i=1 (ri − ρ)2

4. Mean-minus-variance:
− 1

n

∑n
i=1 ri + C

n

∑n
i=1

(
ri − 1

n

∑n
j=1 rj

)2

The objective function Fβ in eq.(2) combines the first two
objectives by the parameter β. The other two objectives
above are convex with respect to r as well and hence can
be proven to have optimal discrete distributions q(θ) with
support size no more than n. Note that since r is a linear
transformation of q(θ), the convexity on r is equivalent to
that on q(θ) as long as q(θ) appears in the objective func-
tion only with the form of ri =

∫
p(xi|θ)q(θ)dθ. Fur-

thermore, we have developed a simple algorithm for finite
mixture models to minimize Fβ in Section 3.3. Note that,
to apply the general framework of Section 3.2 to specific
objective functions, we need learning algorithms for opti-
mizing them for finite mixture models.

7. CONCLUSION

We proposed an objective function for learning of mixture
models, which unifies the MLE and the KVQ with the

parameter β. We proved that the optimal mixing distribu-
tion is a discrete distribution with distinct support points
no more than the sample size and provided a simple al-
gorithm to calculate it. We discussed the nature of the
objective function in relation to the rate-distortion theory
and demonstrated its less proneness to overfitting with an
appropriate choice of the parameter.
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ABSTRACT

Distributed quadratic optimization (DQO) has found

many applications in computer science and engineering.

In designing a message-passing algorithm for DQO, the

basic idea is to decompose the quadratic function into a

set of local functions with respect to a graphic model. The

nodes in the graph send local information of the quadratic

function in message-form to their neighbors iteratively un-

til reaching the global optimal solution. The efficiency

of a message-passing algorithm depends on its computa-

tional complexity, the number of parameters to be trans-

mitted, and its convergence speed. In this work, we study

several message-passing algorithms for comparison. In

particular, we consider the Jacobi-relaxation algorithm,

the generalized linear coordinate descent (GLiCD) algo-

rithm and the min-sum-min algorithm.

1. INTRODUCTION

In this work, we consider solving the quadratic optimiza-

tion problem in a distributed fashion, namely

min
x∈Rn

f(x) = min
x∈Rn

(
1
2
x⊤Jx− h⊤x

)
, (1)

where the quadratic matrix J is real symmetric positive

definite and x is a real vector in n-dimensional space. It is

known that the optimal solution is given by x∗ = J−1h.

We suppose that the quadratic matrix J is sparse and the

dimensionality n is large. In this situation, the direct com-

putation (without using the sparse structure of J) of the

optimal solution may be expensive and unscalable. The

research challenge is how to exploit the sparse geometry

of J to efficiently obtain the optimal solution.

A common approach that exploits the sparsity of J is

to associate the function f(x) with an undirected graph

G = (V, E). That is, the graph has a node for each vari-

able xi and an edge between node i and j only if the ele-

ment Jij is nonzero. By doing so, the sparsity of J is fully

captured by the graph. As a consequence, the function can

be decomposed with respect to G = (V, E) as

f(x) =
∑
i∈V

fi(xi) +
∑

(i,j)∈E

fij(xi, xj), (2)

where each edge-function fij(xi, xj) characterizes the in-

teraction of xi and xj as specified by Jij . With the graphic

model (2), distributed quadratic optimization (DQO) boils

down to how to spread the global information of (J, h) in

(1) over the graph efficiently by exchanging local infor-

mation between neighboring nodes.

DQO over graphic models has found many applica-

tions in computer science and engineering in the past. Some

applications are motivated by emerging parallel computa-

tional architectures (e.g., multicore CPUs and GPUs [1]),

such as support vector machine [2] and channel coding

[3, 4]. Other applications are motivated from the dis-

tributed nature carried by the problem, such as distributed

speech enhancement in wireless microphone networks [5],

distributed Kalman filter [6] and multiuser detection[7].

2. ALGORITHM COMPARISON

In the literature, the Jacobi algorithm is a classic method

for solving the quadratic problem over the associated graph

[8]. At each iteration, the algorithm performs node-oriented

minimizations over all the nodes in the graph, of which the

messages are in a form of linear functions (see Table 1). It

is known that when the matrix J is walk-summable1, the

Jacobi algorithm converges to the optimal solution [9, 10].

To fix the convergence for a general matrix J , the Jacobi

algorithm was under-relaxed by incorporating an estimate

of x∗ from last iteration in computing a new estimate (see

Table 1). It is well known that the Jacobi-relaxation al-

gorithm possesses a guaranteed convergence if the relax-

ation parameter is properly chosen [8]. For the above two

algorithms, once a node-estimate is updated, this estimate

is broadcast to all its neighbors. Because the information

transmitted is general, and not edge-specific, the two al-

gorithms are known to converge slowly [8].

To accelerate the convergence of the Jacobi algorithm,

we proposed the linear coordinate descent (LiCD) algo-

rithm [11]. At each iteration, the LiCD algorithm per-

forms pairwise minimizations over all the edges in the

graph, of which the messages are in a form of linear func-

tions (see Table 1). As shown in [11], if the quadratic ma-

trix J is walk-summable, the LiCD algorithm converges

to the optimal solution. Inspired by the Jacobi-relaxation

1A positive definite matrix J ∈ Rn×n, with all ones on its diagonal,

is walk-summable if the spectral radius of the matrix R̄, where R =
I−J and R̄ = [|Rij |]ni,j=1 , is less than one (i.e., ρ(R̄) < 1). We note

that if the matrix J is diagonally dominant, it is also walk-summable.
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J is walk-summable J is general

Jacobi Alg.:

* node-oriented minimization

* linear message

Jacobi-relaxation Alg.:

* introduce feedback in Jacobi Alg.

LiCD Alg.:

* pairwise minimization

* linear message

GLiCD Alg.:

* introduce feedback in LiCD Alg.

min-sum Alg.:

* pairwise minimization

* quadratic message

min-sum-min Alg.:

* introduce feedback in min-sum Alg.

Table 1. Algorithm comparison.

algorithm, we also extended the LiCD algorithm by incor-

porating feedback from last iteration in computing new

messages in [12]. We name the new algorithm as the

generalized LiCD (GLiCD) algorithm. The GLiCD algo-

rithm was shown in [12] to converge to the optimal solu-

tion for a general matrix J when the amount of feedback

signal is set to be large enough. For both the LiCD and

the GLiCD algorithms, each node computes and transmits

edge-specific information instead of broadcasting some

common parameters to all its neighbors. Such edge-specific

operation helps to spread the global information of (J, h)
over the graph more effectively.

An alternative scheme for solving the quadratic prob-

lem is by using the framework of probability theory [13].

The optimal solution x∗ is viewed as the mean value of a

random vector x ∈ Rn with Gaussian distribution

p(x) ∝ exp

(
−1

2
x⊤Jx + h⊤x

)
. (3)

The min-sum algorithm is one popular approach to esti-

mate both the mean value x∗ = J−1h and individual vari-

ances [14]. At each iteration, the algorithm essentially

performs pairwise minimizations over all the edges in the

graph, of which the messages are in a form of quadratic

functions (see Table 1). For a graph with a tree-structure,

the min-sum algorithm converges to the optimal solution

in finite steps [14]. The question of convergence for loopy

graphic models has been proven difficult. In [9, 10], it was

shown when the matrix J is walk-summable, the min-sum

algorithm converges to the optimal solution.

Due to the fact that the min-sum algorithm may fail

a general matrix J , we proposed the min-sum-min algo-

rithm [15] recently. The derivation of the min-sum-min

algorithm follows the line of work in [12] for the GLiCD

algorithm. Similarly to the GLiCD algorithm, the basic

idea of the min-sum-min algorithm is to incorporate feed-

back from last iteration in computing new messages. We

have shown in [15] that if the amount of the feedback is

large enough, the min-sum-min algorithms converges to

the optimal solution. We note that for the min-sum and the

min-sum-min algorithms, each node computes and trans-

mits edge-specific information to its neighbors, which is

similar to that of the LiCD and the GLiCD algorithms.

The main properties of the above algorithms are sum-

marized in Table 1. One observes that the Jacobi and the

LiCD algorithms share the property that their messages

are in the form of linear functions. On the other hand, the

LiCD and the min-sum algorithms share the property that

both algorithms perform pairwise minimization at each it-

eration. From the viewpoint of minimization strategies

and message-forms, the LiCD algorithm acts as an inter-

mediate method between the Jacobi and the min-sum al-

gorithms. As is analyzed in [11], the computational com-

plexities of the three algorithms at each iteration are in the

order of

Jacobi Alg. → LiCD Alg. → min-sum Alg.

where the min-sum algorithm is most expensive for im-

plementation.

3. UNIFIED MESSAGE-PASSING FRAMEWORK

We note that all the algorithms listed in Table 1 share a

unified message-passing framework despite the fact that

different minimization strategies and message-forms are

applied in the algorithms. We present the unified message-

passing framework in the following.

Consider the quadratic optimization problem (1). We

may assume, without loss of generality, that J is of unit-

diagonal. The local node and edge functions for the graph

G = (V, E) can be constructed as

fi(xi) =
1
2
x2

i − hixi i ∈ V (4)

fij(xi, xj) = Jijxixj (i, j) ∈ E. (5)

An edge exists between node i and j in the graph only

if Jij 6= 0. As a consequence, a sparse matrix J leads

to a sparse graph G = (V, E). We use N(i) to denote

the set of all neighbors of node i ∈ V . The set N(i)\j
excludes the node j from N(i). For each edge (i, j) ∈ E,

we use [j, i] and [i, j] to denote its two directed edges.

Correspondingly, we denote the set of all directed edges

of the graph as ~E.

A message-passing algorithm exchanges information

between neighboring nodes iteratively until reaching con-

sensus. In particular, at time t, each node j collects a

set of messages
{
m

(t)
v→j(xj)|v ∈ N(j)

}
and a set of es-

timates
{
x̂

(t)
j|v , v ∈ N(j)

}
of x∗j by cooperating with its

neighbors. We note that for a directed edge [v, j] ∈ ~E, the
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(a): Messsages (b):  Estimates

Figure 1. An example of the information-flow for node j
at time step k.

associated message m
(t)
v→j(xi) and estimate x̂j|v are ob-

tained by combining the local information of node v and

j at time t− 1 (see Fig. 1). For the Jacobi and the Jacobi-

relaxation algorithms, the elements in {x̂(t)
j|v, v ∈ N(j)}

for each node j are identical, since both algorithms per-

form node-oriented minimizations.

Given the messages at time t, one can define new local

functions as

f
(t)
i (xi) = fi(xi) +

∑
u∈N(i)

m
(t)
u→i(xi) i ∈ V

f
(t)
ij (xi, xj) =

[
fij(xi, xj)−m

(t)
j→i(xi)

−m
(t)
i→j(xj)

]
(i, j) ∈ E

By summing up all the new local functions, it is straight-

forward that

f(x) =
∑
i∈V

f
(t)
i (xi) +

∑
(i,j)∈E

f
(t)
ij (xi, xj). (6)

Thus, the overall objective function remains the same. The

new local functions can be viewed as a reformulation of

the objective function.

The key part of a message-passing algorithm is the

derivation of the updating expressions for
{
(m(t+1)

j→i (xi),

x̂
(t+1)
i|j ), [j, i] ∈ ~E

}
given the information at time t. Note

that for each node i, the estimates {x̂(t)
i|u, u ∈ N(i)} pro-

vide information about the optimal solution x∗i . Thus, the

estimates can be used as feedback in computing new mes-

sages and estimates in next iteration if necessary. An iter-

ative algorithm converges to the optimal solution x∗ if

lim
t→∞ x̂

(t)
i|j = x∗i , [j, i] ∈ ~E. (7)

Different iterative algorithms can be derived by choos-

ing different minimization strategies and message-forms

(see Table 1). As an example, we briefly present the Jacobi-

relaxation algorithm in the following for demonstration.

At time t, each node i keeps track of an estimate x̂
(t)
i of

x∗i and a set of linear messages {m(t)
u→i(xi) = Jiux̂

(t)
u }.

The estimate x̂
(t+1)
i at time step t + 1 is computed as [8]

x̂
(t+1)
i = min

xi

[
f

(t)
i (xi) +

α

2
(xi − x̂

(t)
i )2

]
i ∈ V,(8)

where the parameter α ∈ R controls the amount of feed-

back in computing x̂
(t+1)
i . Note that the feedback in (8)

is represented by a quadratic penalty function in terms of

x̂
(t)
i , which can be easily merged into the local function

f
(t)
i (xi). By letting α = 1 − 1

s , the above expression can

be reformulated as

x̂
(t+1)
i = min

xi

[
sfi(xi) +

∑
u∈N(i)

sJuix̂
(t)
u

+
1− s

2
(xi − x̂

(t)
i )2

]
i ∈ V.

In the literature, s is named as the relaxation parame-

ter. When s = 1 (or equivalently, α = 0), the Jacobi-

relaxation algorithm reduces to the Jacobi algorithm. For

a general matrix J in (1), the Jacobi-relaxation algorithm

converges to the optimal solution x∗ if the relaxation pa-

rameter s is sufficiently close to zero from above.

For those who are interested in the GLiCD and the

min-sum-min algorithms, we refer the readers to [12] and

[15]. Similarly to that of the Jacobi-relaxation, the feed-

backs in the GLiCD and the min-sum-min algorithms are

also represented by some quadratic penalty functions. The

amount of feedback signal in the GLiCD algorithm or the

min-sum-min algorithm is again controlled by a relaxation

parameter.

4. FUTURE WORK

We note that the Jacobi and the Jacobi-relaxation algo-

rithms have a wide range of applications in practice. Nat-

urally, it is worth trying other algorithms as listed in Ta-

ble 1 for solving the same kind of problems. In future

work, we will consider applying the GLiCD algorithm the

min-sum-min algorithms for some practical problems.

5. REFERENCES

[1] Y. El-Kurdi, W. J. Gross, and D. Giannacopoulos,

“Efficient implementation of gaussin belief propaga-

tion solver for large sparse diagonally domiant linear

systems,” IEEE Trans. Magn., vol. 48, no. 2, pp.

471–474, 2012.

[2] D. Bickson, D. Dolev, and E. Yom-Tov, “A Gaus-

sian belief propagation solver for large scale Support

Vector Machines,” in 5th European Conference on

Complex Systems, Sept. 2008.

[3] H. Uchikawa, B. M. Kurkoski, K. Kasai, and

K. Sakaniwa, “Iterative Encoding with Gauss-Seidel

Method for Spatially-Coupled Low-Density Lattice

Codes,” in Proc. IEEE Int. Symp. Information Tho-

ery, MIT Campus, USA, 2012.

[4] N. Sommer, M. Feder, and O. Shalvi, “Low-density

lattice codes,” IEEE Trans. Information Theory, vol.

54, pp. 15611585, Apr. 2008.

[5] R. Heusdens, G. Zhang, R. C. Hendriks, Y. Zeng,

and W. B. Kleijn, “Distributed MVDR Beam-

forming for (Wireless) Microphone Networks Using

43



Message Passing,” accepted by International Work-

shop on Acoustic Signal Enhancement (IWAENC),

2012.

[6] D. Bickson, O. Shental, and D. Dolev, “Distributed

Kalman Filter via Gaussian Belief Propagation,” in

the 46th Allerton Conf. on Communications, Control

and Computing, 2008.

[7] D. Bickson, O. Shental, P. H. Siegel, J. K. Wolf, and

D. Dolev, “DGaussian belief propagation based mul-

tiuser detection,” in In IEEE Int. Symp. on Inform.

Theory (ISIT), July 2008, pp. 1878–1882.

[8] D. P. Bertsekas and J. N. Tsitsikis, Parallel and

distributed Computation: Numerical Methods, Bel-

mont, MA: Athena Scientific, 1997.

[9] J. K. Johnson, D. M. Malioutov, and A. S. Willsky,

“Walk-sum Interpretation and Analysis of Gaussian

Belief Propagation,” in Advances in Neural Infor-

mation Processing Systems, Cambridge, MA: MIT

Press, 2006, vol. 18.

[10] D. M. Malioutov, J. K. Johnson, and A. S. Will-

sky, “Walk-Sums and Belief Propagation in Gaus-

sian Graphical Models,” J. Mach. Learn. Res., vol.

7, pp. 2031–2064, 2006.

[11] G. Zhang and R. Heusdens, “Linear Coordinate-

Descent Message-Passing for Quadratic Optimiza-

tion,” appering in Neural Computation.

[12] G. Zhang and R. Heusdens, “Convergence of Gener-

alized Linear Coordinate-Descent Message-Passing

for Quadratic Optimization,” in Proc. IEEE Inter-

national Symposium on Information Theory, June

2012.

[13] S.L. Lauritzen, Graphical Models, Oxford Univer-

sity Press, 1996.

[14] J. Pearl, “Probabilistic Reasoning in Intelligent Sys-

tems: Networks of Plausible Inference,” Morgan

Kaufman Publishers, 1988.

[15] G. Zhang and R. Heusdens, “Convergence of Min-

Sum-Min Message-Passing for Quadratic Optimiza-

tion,” in preparation for submission.

44



GENERALISED ENTROPIES AND ASYMPTOTIC COMPLEXITIES OF LANGUAGES

Yuri Kalnishkan, Michael V. Vyugin, and Vladimir Vovk

Computer Learning Research Centre and Department of Computer Science,
Royal Holloway, University of London,

Egham, Surrey, TW20 0EX, United Kingdom

ABSTRACT

The talk explores connections between asymptotic com-
plexity and generalised entropy. Asymptotic complex-
ity of a language (a language is a set of finite or infinite
strings) is a way of formalising the complexity of pre-
dicting the next element in a sequence: it is the loss per
element of a strategy asymptotically optimal for that lan-
guage. Generalised entropy extends Shannon entropy to
arbitrary loss functions; it is the optimal expected loss
given a distribution on possible outcomes. It turns out that
the set of tuples of asymptotic complexities of a language
w.r.t. different loss functions can be described by means of
generalised entropies corresponding to the loss functions.

1. INTRODUCTION

The complete version of this paper has been accepted to
Information and Computation. An earlier version [1] ap-
peared in conference proceedings.

We consider the following on-line learning scenario:
given a sequence of previous outcomes x1, x2, . . . , xn−1,
a prediction strategy is required to output a prediction γn

for the next outcome xn.
We assume that outcomes belong to a finite outcome

space Ω. Predictions may be drawn from a compact pre-
diction space Γ. A loss function λ : Ω × Γ → [0,+∞]
is used to measure the discrepancy between predictions
and actual outcomes; it is assumed to be continuous. The
triple G = 〈Ω,Γ, λ〉 describing the prediction environ-
ment is called a game.

The performance of a strategy S on a finite string
x = (x1x2 . . . , xn) is measured by the cumulative loss
LossS(x) =

∑n
i=1 λ(xi, γi). Different aspects of this

prediction framework have been extensively studied; see
[2] for an overview.

One is tempted to define complexity of a string as the
loss of an optimal strategy so that elements of “simple”
strings x are easy to predict and elements of “compli-
cated” strings are hard to predict and large loss is incurred.
However this intuitive idea is difficult to implement for-
mally because it is hard to define an optimal strategy. If
x is fixed, the strategy can be tailored to suffer the mini-
mum possible loss on x (0 for natural loss functions such
as square, absolute, or logarithmic). If there is complete
flexibility in the choice of x, i.e., “anything can happen”,
then every strategy can be tricked into suffering large loss

and being greatly outperformed by some other strategy on
some sequences x.

One approach to this problem is predictive complexity
introduced in [3] and studied in [4, 5, 6]. This approach
replaces strategies by the class of semi-computable super-
loss processes. Under certain restrictions on Γ and λ this
class has a natural optimal element. Predictive complexity
of a finite string is defined up to a constant and is similar
in many respects to Kolmogorov complexity; predictive
complexity w.r.t. the logarithmic loss function equals the
negative logarithm of Levin’s a priori semi-measure.

This paper takes a different approach and introduces
asymptotic complexity, which is in some respects easier
and more intuitive. It is defined for languages (infinite
sets of finite strings and sets of infinite sequences) and it
equals the asymptotically optimal loss per element. This
idea leads to several versions of complexity that behave
slightly differently. An important advantage of this ap-
proach is that asymptotic complexity exists for all loss
functions λ thus eliminating the question of existence, still
partly unsolved for predictive complexity. One can con-
sider effective and polynomial-time versions of asymp-
totic complexity by restricting oneself to computable or
polynomial-time computable strategies. The existence of
corresponding asymptotic complexities follows trivially.

In this paper we study the following question. Let
Gk = 〈Ω,Γk, λk〉, k = 1, 2, . . . ,K, be games with the
same finite set of outcomes Ω. How do asymptotic com-
plexities of a same set of finite or infinite sequences of
elements of Ω compare? We answer this question by de-
scribing the set

(AC1(L),AC2(L), . . . ,ACK(L)) ⊆ RK ,

where ACk is an asymptotic complexity w.r.t. Gk and L
ranges over all non-trivial languages. The set turns out to
have a simple geometric description in terms of the gen-
eralised entropy studied in [7]. The set depends on the
type of asymptotic complexity and may be different for
different complexities 1.

For the Shannon entropy there are many results con-
necting it with complexity and Hausdorff dimension; see,

1Note that the statement of the main theorem in the conference ver-
sion [1] of this paper was inaccurate in this respect. A corrected journal
version will appear soon
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e.g., Theorem 2.8.1 in [8] and [9]. This paper directly
generalises the main result of [10].

The set depends on the type of asymptotic complexity
and may be different for different complexities 2.

2. ASYMPTOTIC COMPLEXITY

2.1. Finite Sequences

Let L ⊆ Ω∗ be a set of finite strings. We call the values

AC(L) = inf
A

lim sup
n→+∞

max
x∈L∩Ωn

LossA(x)
n

, (1)

AC(L) = inf
A

lim inf
n→+∞ max

x∈L∩Ωn

LossA(x)
n

(2)

the upper and lower asymptotic complexity of L w.r.t. the
game G. We use subscripts for AC to specify a particular
game if it is not clear from the context.

In this paper we are concerned only with infinite sets
of finite sequences and asymptotic complexity of a finite
or an empty language L ⊆ Ω∗ is undefined. Thus by
assumption there are strings of infinitely many lengths in
L.

Still there may be no strings of a certain length in L.
Let us assume that the limits in (1) and (2) are taken over
the subsequence n1 < n2 < . . . of values such that L ∩
Ωni 6= ∅.

2.2. Infinite Sequences

There are two natural ways to define complexities of non-
empty languages L ⊆ Ω∞.

First we can extend the notions we have just defined.
Indeed, for a nonempty set of infinite sequences consider
the set of all finite prefixes of all its sequences. The lan-
guage thus obtained is infinite and has upper and lower
complexities. For the resulting complexities we shall re-
tain the notation AC(L) and AC(L). We refer to these
complexities as uniform.

The second way is the following. Let

AC(L) = inf
A

sup
x∈L

lim sup
n→+∞

LossA(x|n)
n

,

AC(L) = inf
A

sup
x∈L

lim inf
n→+∞

LossA(x|n)
n

.

We refer to this complexity as non-uniform.
The concept of asymptotic complexity generalises cer-

tain complexity measures studied in the literature. The
concepts of predictability and dimension studied in [10]
can be easily reduced to asymptotic complexity: the di-
mension is the lower non-uniform complexity w.r.t. a mul-
tidimensional generalisation of the logarithmic game and
predictability equals 1−AC, where AC is the lower non-
uniform complexity w.r.t. a multidimensional generalisa-
tion of the absolute-loss game.

2Note that the statement of the main theorem in the conference ver-
sion of this paper was inaccurate in this respect. A corrected journal
version will appear soon

3. OTHER DEFINITIONS

3.1. Entropy

Let P(Ω) be the set of probability distributions on Ω of
size M . The set Ω is finite and we can identify P(Ω) with
the standard (M − 1)-simplex

PM =
{(
p(0), p(1), . . . , p(M−1)

)
∈ [0, 1]M |
M−1∑
i=0

p(i) = 1

}
.

Generalised entropy H : P(Ω) → R is the infimum of
expected loss over γ ∈ Γ, i.e., for

p∗ =
(
p(0), p(1), . . . , p(M−1)

)
∈ P(Ω)

we have

H(p∗) = min
γ∈Γ

Ep∗λ(ω, γ) = min
γ∈Γ

M−1∑
i=0

p(i)λ(ω(i), γ) .

Since p(i) can be 0 and λ(ω(i), γ) can be +∞, we need to
resolve an ambiguity. Let us assume that in this definition
0× (+∞) = 0.

3.2. Sublattices and Subsemilattices

A set M ⊆ RK is a sublattice of RK if for every x, y ∈
M it contains their coordinate-wise greatest lower bound
min(x, y) and least upper bound max(x, y). Clearly, a
sublattice of RK contains the coordinate-wise maximum
and minimum of any finite subset. Similarly, a set M ⊆
RK is an upper subsemilattice if for every x, y ∈ M
it contains their smallest upper bound max(x, y); a set
M ⊆ RK is a lower subsemilattice if for every x, y ∈ M
it contains their largest lower bound min(x, y). In this
paper we mostly use upper subsemilattices and therefore
sometimes omit the word “upper” in what follows.

A sublattice closure of a set M ⊆ RK is the small-
est sublattice containing M. Respectively, an upper sub-
semilattice closure of a setM⊆ RK is the smallest upper
semilattice containing M and a lower subsemilattice clo-
sure of a setM⊆ RK is the smallest lower subsemilattice
containing M. The sub(semi)lattice closure of M exists
and it is the intersection of all sub(semi)lattices contain-
ing M. The sublattice closure contains the subsemilattice
closures because each sublattice is a subsemilattice.

Note that the definitions are coordinate-dependent.

3.3. Weak Mixability

The results of this paper are valid for the so called weakly
mixable games defined in [11]. A game G is weakly mix-
able if for every two prediction strategies S1 and S2 there
is a prediction strategy S such that

LossS(x) ≤ min (LossS1(x),LossS2(x))+α(|x|) (3)

for all finite strings x, where |x| is the length of x and
α(n) = o(n) as n → ∞. It is shown in [11] that weak
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mixability is equivalent to the convexity of the set of su-
perpredictions w.r.t. G. In particular, if Γ is convex and λ
is convex in predictions, weak mixability holds.

3.4. Effective Versions of Complexities

One can restrict the range of possible strategies to com-
putable or polynomial-time computable and obtain effec-
tive and polynomial-time versions of the asymptotic com-
plexities.

The concept of a computable strategy requires clarifi-
cation. We will give a definition along the lines of [12];
see also [13, Sections 7 and 9.4].

A dyadic rational number is a number of the form
m/2n, where m is an integer and n is a positive inte-
ger. We call a triple 〈b,x,y〉, where b ∈ B is a bit and
x,y ∈ B∗ are binary strings, a representation of a dyadic
number d if x is the binary representation of a nonnegative
integer m > 0, y is the binary representation of a nonneg-
ative integer n > 0, and b represents a sign s (assume that
s = 1 if b = 1 and s = −1 if b = 0) so that d = sm/2n.

For every x ∈ R define a set CFx of dyadic Cauchy
sequences exponentially converging to x, i.e., functions
φx from non-negative integers to dyadic numbers such
that |φx(n) − x| ≤ 2−n for all n. Any element of CFx

can be thought of as a dyadic representation of x.

Let Ω be a finite set. A function f : Ω∗ → R is
computable if there is a Turing machine that given a finite
string x = x1x2 . . . xm ∈ Ω∗ and non-negative integer
precision n outputs a representation of a dyadic number
d such that |f(x) − d| ≤ 2−n. In other words, for every
x ∈ Ω∗ the machine calculates a function from CFf(x). If
there is a polynomial p(·, ·) such that the machine always
finishes work in p(m,n), we say that f is polynomial-time
computable. A function f = (f1, f2, . . . , fk) : Ω∗ →
Rk is (polynomial-time) computable if all its components
f1, f2, . . . , fk are (polynomial-time) computable.

A function f : M → R, where M ⊆ R, is com-
putable if there is an oracle Turing machine that given a
non-negative integer precision n (as a binary string) and
an oracle evaluating some φx ∈ CFx outputs a represen-
tation of a dyadic number d such that |f(x) − d| ≤ 2−n.
If there is a polynomial p(·) such that the machine finishes
work in p(n) for all x ∈ M , we say that f is polynomial-
time computable. Intuitively a machine can at any mo-
ment request a dyadic approximation of x up to 2−m and
get it in no time. Computable and polynomial-time com-
putable functions on M ⊆ Rk and M × Ω∗ to R and Rm

are defined in a similar fashion.

We call a game G = 〈Ω,Γ, λ〉 (polynomial-time) com-
putable if Γ ⊆ Rk is a closure of its interior and the func-
tion e−λ(ω,γ) is (polynomial-time) computable. Note that
we do not postulate computability of λ itself because if
would have implied boundedness of λ. A (polynomial-
time) computable strategy w.r.t. G is a (polynomial-time)
computable function Ω∗ → Γ.

3.5. Computability and Weak Mixability

A (polynomial-time) computable game G will be called
(polynomial-time) computable very weakly mixable if for
all (polynomial-time) computable strategies S1 and S2

and ε > 0 there is a (polynomial-time) computable strat-
egy S such that

LossS(x) ≤ min (LossS1(x),LossS2(x))+
ε|x|+ αε(|x|)

for all finite strings x, where αε(n) = o(n) as n→∞.
It is not easy to formulate a simple criterion of com-

putable mixability. The following rather general condi-
tion is sufficient. If a game G is (polynomial-time) com-
putable, the prediction space Γ is convex, and the loss
function λ(ω, γ) is convex in the second argument, then
G is (polynomial-time) computable weakly mixable.

If we add the requirement of boundness of λ, we can
achieve an effective version of (3), but this is not necessary
for the purpose of this paper.

4. MAIN RESULT

Consider K ≥ 1 games G1,G2, . . . ,GK with the same
finite set of outcomes Ω. Let Hk be Gk-entropy for k =
1, 2, . . . ,K. The G1/G2/ . . . /GK-entropy set is the set
{(H1(p),H2(p), . . . ,HK(p)) | p ∈ P(Ω)} ⊆ RK . The
convex hull of the G1/G2/ . . . /GK-entropy set is called
the G1/G2/ . . . /GK-entropy hull.

Theorem 1. If games G1,G2, . . . ,GK (K ≥ 1) have the
same finite outcome space Ω and are weakly mixable, then
the sublattice closure of the G1/G2/ . . . /GK-entropy hull
coincides with the following sets (here ACk is asymptotic
complexity w.r.t. Gk, k = 1, 2, . . . ,K):{

(AC1(L),AC2(L), . . . ,ACK(L)) |

L ⊆ Ω∗ and L is infinite
}

;

{
(AC1(L),AC2(L), . . . ,ACK(L)) |

L ⊆ Ω∞ and L 6= ∅
}

;

{(
AC

1
(L),AC

2
(L), . . . ,AC

K
(L)
)
|

L ⊆ Ω∞ and L 6= ∅
}

;

the upper subsemilattice closure of the G1/G2/ . . . /GK-
entropy hull coincides with the following sets:{(

AC1(L),AC2(L), . . . ,ACK(L)
) |

L ⊆ Ω∗ and L is infinite
}

;
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{(
AC1(L),AC2(L), . . . ,ACK(L)

) |
L ⊆ Ω∞ and L 6= ∅

}
;

{(
AC1(L),AC2(L), . . . ,ACK(L)

)
|

L ⊆ Ω∞ and L 6= ∅
}
.

If the games G1,G2 . . . ,GK are (polynomial-time) com-
putable very weakly mixable, the same holds for effective
and polynomial-time complexities.

The conference version [1] of the paper incorrectly
claimed that all the sets of complexity tuples coincide with
the upper subsemilattice closure of the entropy hull. This
is not true because upper subsemilattice closure of the en-
tropy hull may be different from the sublattice closure.

5. RECALIBRATION LEMMA

The key element of the proof is the following lemma:

Lemma 1. Let A1,A2, . . . ,AK be prediction strategies
for weakly mixable games G1,G2 . . . ,GK with the same
set of outcomes Ω of size M . Then for every weakly mix-
able game G and ε > 0 there is a prediction strategy
S and a function f : N → R such that f(n) = o(n) as
n→∞ and for every finite string x ∈ Ω∗ there are distri-
butions p1, p2, . . . , pN ∈ PM and q = (q1, q2, . . . , qN ) ∈
PN such that

1. for all k = 1, 2, . . . ,K if Hk is the generalised en-
tropy w.r.t. Gk then

N∑
i=1

qiHk(pi) ≤
LossGk

Ak
(x)

|x| + ε ;

2. if H is the generalised entropy w.r.t. G then

LossG
S(x) ≤ |x|

(
N∑

i=1

qiH(pi) + ε

)
+ f(|x|) .

The idea behind the lemma can be described infor-
mally as follows. Consider a predictor outputting, say, the
likelihood of a rain. Suppose that by analysing its past per-
formance we have found a pattern of the following kind.
Whenever the predictor outputs the value of 70%, it ac-
tually rains in 90% of cases. We can thus improve the
predictor by recalibrating it: if we see the prognosis of
70%, we replace it by 90%. Generally speaking, we may
observe that whenever a predictor outputs a prediction γ1,
a more appropriate choice would be γ2. By outputting γ1,
the predictor signals us about a specific state of the nature;
however, γ2 is a better prediction for this state. The loss
per element of the optimised strategy is close to the gen-
eralised entropy w.r.t. some distribution and this leads to
the first part of the lemma.

The intuitive interpretation of the seond part is as fol-
lows. Predictions of (discretised) strategies allow us to
split a string to several (generally speaking, not contigu-
ous) substrings. The strategies tell us nothing of the be-
haviour of outcomes within the substrings so we can as-
sume that inside each substring the outcomes are i.i.d.
(independent identically distributed) and construct a new
strategy exploiting this. The loss per element of the new
strategy will be a convex combination of entropies w.r.t.
the distributions of outcomes from the substrings and the
new strategy will perform better or nearly as well as the
original strategies.
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ABSTRACT

There are two methods of set prediction that are provably
valid under the assumption of randomness: transductive
conformal prediction and inductive conformal prediction.
The former method is informationally efficient but often
lacks computational efficiency. The latter method is, vice
versa, computationally efficient but less efficient informa-
tionally. This talk discusses a new method, which we call
cross-conformal prediction, that combines informational
efficiency of transductive conformal prediction with com-
putational efficiency of inductive conformal prediction.
The downside of the new method is that its validity is an
empirical rather than mathematical fact.

1. INTRODUCTION

The method of (transductive) conformal prediction pro-
duces set predictions that are automatically valid in the
sense that their unconditional coverage probability is
equal to or exceeds a preset confidence level ([1], Chap-
ter 2). A more computationally efficient method of this
kind is that of inductive conformal prediction ([2], [1],
Section 4.1, [3]). However, inductive conformal predic-
tors are typically less informationally efficient, in the
sense of producing larger prediction sets as compared
with conformal predictors. Motivated by the method
of cross-validation, this talk explores a hybrid method,
which we call cross-conformal prediction.

We are mainly interested in the problems of classifica-
tion and regression, in which we are given a training set
consisting of examples, each example consisting of an ob-
ject and a label, and asked to predict the label of a new test
object; in the problem of classification labels are elements
of a given finite set, and in the problem of regression la-
bels are real numbers. If we are asked to predict labels
for more than one test object, the same prediction proce-
dure can be applied to each test object separately. In this
introductory section and in our empirical studies we con-
sider the problem of binary classification, in which labels
can take only two values, which we will encode as 0 and 1.

The empirical studies described in this paper used the R system and
the gbm package written by Greg Ridgeway (based on the work of Fre-
und, Schapire, and Friedman). This work was partially supported by the
Cyprus Research Promotion Foundation.

We always assume that the examples (both the training ex-
amples and the test examples, consisting of given objects
and unknown labels) are generated from an exchangeable
probability measure (i.e., a probability measure that is in-
variant under permuting the examples). This exchange-
ability assumption is slightly weaker than the assumption
of randomness that the examples are generated indepen-
dently from the same probability measure.

The idea of conformal prediction is to try the two dif-
ferent labels, 0 and 1, for the test object, and for either
postulated label to test the assumption of exchangeability
by checking how well the test example conforms to the
training set; the output of the procedure is the correspond-
ing p-values p0 and p1. Two standard ways to package the
pair (p0, p1) are:

• Report the confidence 1−min(p0, p1) and credibil-
ity max(p0, p1).

• For a given significance level ε ∈ (0, 1) output the
corresponding prediction set {y | py > ε}.

In inductive conformal prediction the training set is
split into two parts, the proper training set and the cali-
bration set. The two p-values p0 and p1 are computed by
checking how well the test example conforms to the cali-
bration set. The way of checking conformity is based on a
prediction rule found from the proper training set and pro-
duces, for each example in the calibration set and for the
test example, the corresponding “conformity score”. The
conformity score of the test example is then calibrated to
the conformity scores of the calibration set to obtain the
p-value. For details, see Section 2.

Inductive conformal predictors are usually much more
computationally efficient than the corresponding confor-
mal predictors. However, they are less informationally
efficient: they use only the proper training set when de-
veloping the prediction rule and only the calibration set
when calibrating the conformity score of the test example,
whereas conformal predictors use the full training set for
both purposes.

Cross-conformal prediction modifies inductive con-
formal prediction in order to use the full training set for
calibration and significant parts of the training set (such as
80% or 90%) for developing prediction rules. The train-
ing set is split intoK folds of equal (or almost equal) size.
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For each k = 1, . . . ,K we construct a separate inductive
conformal predictor using the kth fold as the calibration
set and the rest of the training set as the proper training
set. Let (p0

k, p
1
k) be the corresponding p-values. Next the

two sets of p-values, p0
k and p1

k, are merged into combined
p-values p0 and p1, which are the result of the procedure.

In Section 3 we describe the method of cross-
conformal prediction. Since we have no theoretical results
about the validity of cross-conformal prediction in this
talk, we rely on empirical studies involving the standard
Spambase data set. Finally, we use the same data set
to demonstrate the efficiency of cross-conformal predic-
tors as compared with inductive conformal predictors.
Section 4 states an open problem.

For the full version of this extended abstract, see [4].

2. INDUCTIVE CONFORMAL PREDICTORS

We fix two measurable spaces: X, called the object space,
and Y, called the label space. The Cartesian product
Z := X × Y is the example space. A training set is a
sequence (z1, . . . , zl) ∈ Zl of examples zi = (xi, yi),
where xi ∈ X are the objects and yi ∈ Y are the la-
bels. For S ⊆ {1, . . . , l}, we let zS stand for the sequence
(zs1 , . . . , zsn

), where s1, . . . , sn is the sequence of all ele-
ments of S listed in the increasing order (so that n := |S|).

In the method of inductive conformal prediction, we
split the training set into two non-empty parts, the proper
training set zT and the calibration set zC , where (T,C)
is a partition of {1, . . . , l}. An inductive conformity mea-
sure is a measurable function A : Z∗ × Z → R (we are
interested in the case where A(ζ, z) does not depend on
the order of the elements of ζ ∈ Z∗). The idea behind the
conformity score A(zT , z) is that it should measure how
well the example z conforms to the proper training set zT .
A standard choice is

A(zT , (x, y)) := ∆(y, f(x)), (1)

where f : X → Y′ is a prediction rule found from zT
as the training set and ∆ : Y ×Y′ → R is a measure of
similarity between a label and a prediction. Allowing Y′

to be different from Y (usually Y′ ⊃ Y) may be useful
when the underlying prediction method gives additional
information to the predicted label; e.g., the MART pro-
cedure used in Section 3 gives the logit of the predicted
probability that the label is 1.

The inductive conformal predictor (ICP) correspond-
ing to A is defined as the set predictor

Γε(z1, . . . , zl, x) := {y | py > ε}, (2)

where ε ∈ (0, 1) is the chosen significance level (1 − ε is
known as the confidence level), the p-values py , y ∈ Y,
are defined by

py :=
|{i ∈ C | αi ≤ αy}|+ 1

|C|+ 1
,

and

αi := A(zT , zi), i ∈ C, αy := A(zT , (x, y)) (3)

are the conformity scores. Given the training set and a test
object x the ICP predicts its label y; it makes an error if
y /∈ Γε(z1, . . . , zl, x).

The random variables whose realizations are xi, yi, zi,
x, y, z will be denoted by the corresponding upper case
letters (Xi, Yi, Zi, X , Y , Z, respectively). The following
proposition of validity is almost obvious.

Proposition 1 ([1], Proposition 4.1). If random examples
Z1, . . . , Zl, Z = (X,Y ) are exchangeable (i.e., their dis-
tribution is invariant under permutations), the probability
of error Y /∈ Γε(Z1, . . . , Zl, X) does not exceed ε for any
ε and any inductive conformal predictor Γ.

We call the property of inductive conformal predictors
asserted in Proposition 1 unconditional validity since it
is about the unconditional probability of error. Various
conditional properties of validity are discussed in [5] and,
in more detail, [6].

The family of prediction sets Γε(z1, . . . , zl, x), ε ∈
(0, 1), is just one possible way of packaging the p-values
py . Another way, already discussed in Section 1 in the
context of binary classification, is as the confidence 1− p,
where p is the second largest p-value among py , and the
credibility maxy py . In the case of binary classification
confidence and credibility carry the same information as
the full set {py | y ∈ Y} of p-values, but this is not true
in general.

In our experiments reported in the next section we split
the training set into the proper training set and the calibra-
tion set in proportion 2 : 1. This is the most standard
proportion (cf. [7], p. 222, where the validation set plays
a similar role to our calibration set), but the ideal propor-
tion depends on the learning curve for the given problem
of prediction (cf. [7], Figure 7.8). Too small a calibration
set leads to a high variance of confidence (since calibrat-
ing conformity scores becomes unreliable) and too small
a proper training set leads to a downward bias in confi-
dence (conformity scores based on a small proper train-
ing set cannot produce confident predictions). In the next
section we will see that using cross-conformal predictors
improves both bias and variance (cf. Table 1).

3. CROSS-CONFORMAL PREDICTORS

Cross-conformal predictors (CCP) are defined as follows.
The training set is split into K non-empty subsets (folds)
zSk

, k = 1, . . . ,K, where K ∈ {2, 3, . . .} is a param-
eter of the algorithm and (S1, . . . , SK) is a partition of
{1, . . . , l}. For each k ∈ {1, . . . ,K} and each potential
label y ∈ Y of the test object x find the conformity scores
of the examples in zSk

and of (x, y) by

αi,k := A(zS−k
, zi), i ∈ Sk, αyk := A(zS−k

, (x, y)),
(4)

where S−k := ∪j 6=kSj and A is a given inductive con-
formity measure. The corresponding p-values are defined
by

py :=
∑K
k=1 |{i ∈ Sk | αi,k ≤ αyk}|+ 1

l + 1
. (5)
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Confidence and credibility are now defined as before; the
set predictor Γε is also defined as before, by (2), where
ε > 0 is another parameter.

The definition of CCPs parallels that of ICPs, except
that now we use the whole training set for calibration. The
conformity scores (4) are computed as in (3) but using the
union of all the folds except for the current one as the
proper training set. Calibration (5) is done by combining
the ranks of the test example (x, y) with a postulated label
in all the folds.

If we define the separate p-value

pyk :=
|{i ∈ Sk | αi,k ≤ αyk}|+ 1

|Sk|+ 1

for each fold, we can see that py is essentially the average
of pyk. In particular, if each fold has the same size, |S1| =
· · · = |SK |, a simple calculation gives

py = p̄y +
K − 1
l + 1

(p̄y − 1) ≈ p̄y,

where p̄y := 1
K

∑K
k=1 p

y
k is the arithmetic mean of pyk and

the ≈ assumes K � l.
We give calibration plots for 5-fold and 10-fold cross-

conformal prediction taking K ∈ {5, 10} following the
advice in [7] (who refer to Breiman and Spector’s and
Kohavi’s work). In our experiments we use the popular
Spambase data set. The size of the data set is 4601, and
there are two labels: spam, encoded as 1, and email,
encoded as 0.

We consider the conformity measure (1) where f is
output by MART ([7], Chapter 10) and

∆(y, f(x)) :=

{
f(x) if y = 1
−f(x) if y = 0.

(6)

MART’s output f(x) models the log-odds of spam vs
email,

f(x) = log
P (1 | x)
P (0 | x)

,

which makes the interpretation of (6) as conformity score
very natural. (MART is known [7] to give good results on
the Spambase dataset.)

Figure 1 gives the calibration plots for the CCP and
for 8 random splits of the data set into a training set of
size 3600 and a test set of size 1001 and of the training set
into 5 or 10 folds. There is a further source of randomness
as the MART procedure is itself randomized. The func-
tions plotted in Figure 1 map each significance level ε to
the percentage of erroneous predictions made by the set
predictor Γε on the test set. Visually, the plots are well-
calibrated (close to the bisector of the first quadrant).

As for the efficiency of the CCP, see Table 1, which
gives some statistics for the confidence and credibility
output by the ICP and the 5-fold and 10-fold CCP. The
columns labelled “0” to “7” give the mean values of confi-
dence and credibility over the test set for various values of

the seed for the R pseudorandom number generator. The
column labelled “Average” gives the average

v̄ :=
1
8

7∑
i=0

vi

of all the 8 mean values (which we denote v0, . . . , v7) for
the seeds 0–7, and the column labelled “St. dev.” gives the
standard unbiased estimate√√√√1

7

7∑
i=0

(vi − v̄)2

of the standard deviation of the mean values computed
from v0, . . . , v7. The biggest advantage of the CCP is in
the stability of its confidence values: the standard devi-
ation of the mean confidences is much less than that for
the ICP. However, the CCP also gives higher confidence;
to some degree this can be seen from the table, but the
high variance of the ICP confidence masks it: e.g., for the
first 100 seeds the average of the mean confidence for ICP
is 99.16% (with the standard deviation of the mean con-
fidences equal to 0.149%, corresponding to the standard
deviation of 0.015% of the average mean confidence).

4. CONCLUSION

At this time there are no theoretical results about the valid-
ity of cross-conformal predictors (like Proposition 1), and
it is an interesting open problem to establish such results.
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Figure 1. Top panels: the calibration plots for the cross-conformal predictor with K = 5 (left) and K = 10 (right)
folds and the first 8 seeds, 0–7, for the R pseudorandom number generator. Bottom panels: the lower left corner of the
corresponding top panel (which is the most important part of the calibration plot in applications).

Seed 0 1 2 3 4 5 6 7 Average St. dev.
mean conf., ICP 99.25% 99.23% 99.00% 99.17% 99.30% 99.12% 99.38% 99.25% 99.21% 0.116%
mean cred., ICP 51.31% 50.37% 49.93% 52.45% 48.98% 50.34% 50.18% 52.00% 50.69% 1.148%
mean conf., K = 5 99.22% 99.17% 99.17% 99.24% 99.27% 99.27% 99.30% 99.30% 99.24% 0.054%
mean cred., K = 5 51.11% 49.74% 50.34% 50.69% 49.85% 49.49% 50.95% 51.46% 50.45% 0.713%
mean conf., K = 10 99.24% 99.20% 99.20% 99.23% 99.26% 99.28% 99.34% 99.32% 99.26% 0.051%
mean cred., K = 10 51.08% 49.74% 50.29% 50.77% 49.75% 49.48% 50.96% 51.45% 50.44% 0.727%

Table 1. Mean (over the test set) confidence and credibility for the ICP and the 5-fold and 10-fold CCP. The results are
given for various values of the seed for the R pseudorandom number generator; column “Average” gives the average of
all the 8 values for the seeds 0–7, and column “St. dev.” gives the standard unbiased estimate of the standard deviation
computed from those 8 values.
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ABSTRACT

We introduce a family of minimum description length mod-
els which explicitly utilizes phonetic features and captures
long-range contextual rules that condition recurrent cor-
respondences of sounds within a language family. We
also provide an algorithm to learn a model from this fam-
ily given a corpus of cognates, sets of genetically related
words. Finally, we present an imputation procedure which
allows us compare the quality of alignment models, as
well as the goodness of the data sets. Our evaluations
demonstrate that the new model yields improvements in
performance, as compared to those previously reported in
the literature.

1. INTRODUCTION

This paper introduces a family of context-aware models
for alignment and analysis of etymological data on the
level of phonetic features. We focus on discovering the
rules of regular (or recurrent) phonetic correspondence
across languages and determining genetic relations among
a group of languages, based on linguistic data. In this
work, we use the StarLing database of Uralic, [1], based
on [2], restricted to the Finno-Ugric sub-family, consisting
of 1898 cognate sets, as well as Suomen Sanojen Alku-
perä (SSA), “The Origin of Finnish Words,” a Finnish et-
ymological dictionary, [3], which contains over 5000 cog-
nate sets. Elements within a given cognate set are words
posited by the database creators to be derived from a com-
mon origin, a word-form in the ancestral proto-language.

One traditional arrangement of the Uralic languages—
adapted from Encyclopedia Britannica—is shown in Fig-
ure 1; alternative arrangements found in the literature in-
clude moving Mari into a separate branch, or grouping it
with Mordva into a branch, called “Volgaic”.

We aim to find the best alignment at the level of single
sounds. The database itself only contains unaligned sets
of corresponding words, with no notion of which sounds
correspond, i.e., how the sounds align. We learn rules
of phonetic correspondence allowing only the data to de-
termine what rules underly it, using no externally sup-
plied (and possibly biased) prior assumptions or “univer-
sal” principles—e.g., no preference to align vowel with
vowels, a symbol with itself, etc. Therefore, all rules we
find are inherently encoded in the corpus itself.

Uralic tree   

Figure 1. Finno-Ugric branch of Uralic language family

The criterion we use to choose a model (class) from
the family we define is the code-length needed to com-
municate the complete (aligned) data. The learned min-
imum description length (MDL) models provide the de-
sired alignments on the sound level, but also the underly-
ing rules of correspondence, which enable us to compress
the data. Apart from looking at the code-length, we also
evaluate our models using an imputation (reconstruction
of held-out data) procedure and by building phylogenies
(family trees). We release the suite of etymological soft-
ware for public use.

Most closely related to this work is our own previous
work, e.g., [4], and work conducted at Berkeley, e.g., [5,
6]. The main improvement over these lies in awareness of
a broader phonetic context of our models. We build deci-
sion trees to capture this context, where irrelevant context
does not increase model complexity.

2. ALIGNING PAIRS OF WORDS

We begin with pairwise alignment: aligning pairs of words,
from two related languages in our corpus of cognates. For
each word pair, the task of alignment means finding ex-
actly which symbols correspond. The simplest form of
such alignment at the symbol level is a pair (σ : τ) ∈
Σ×T , a single symbol σ from the source alphabet Σ with
a symbol τ from the target alphabet T . We denote the
sizes of the alphabets by |Σ| and |T |.

To model insertions and deletions, we augment both
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alphabets with a special empty symbol—denoted by a dot—
and write the augmented alphabets as Σ. and T.. We can
then align word pairs such as vuosi—al (meaning “year”
in Finnish and Xanty), for example as any of:

v u o s i
| | | | |
a l . . .

v u o s i
| | | | |
. a . l .

etc...

The alignment on the right then consists of the symbol
pairs: (v:.), (u:a), (o:.), (s:l), (i:.).

3. FEATURE-WISE CONTEXT MODELS

Rather than encoding symbols (sounds) as atomic, we code
them in terms of their phonetic features. To this end, the
corpus has been transcribed into feature vectors, where
each sound is represented as a vector of five multinomi-
als, taking on two to eight values, where the first entry
is its type (consonant or vowel) and the remaining four
entries are as listed in Figure 2. We also encode word
boundaries (denoted by #) and dots (deletions/insertions)
as extra types, with no additional features.

Consonant articulation
M Manner plosive, fricative, glide, ...
P Place labial, dental, ..., velar, uvular
X Voiced – , +
S Secondary – , affricate, aspirate, ...

Vowel articulation
V Vertical high—mid—low
H Horizontal front—center—back
R Rounding – , +
L Length 1—5

Figure 2. Phonetic features for consonants and vowels.

We employ the MDL Principle [7] for model class se-
lection and the MDL cost consists of two parts. First, we
encode the model class C, which is determined by a set of
18 decision trees, one for each feature (type plus four con-
sonant and four vowel features) on both levels—source
and target language. These trees query some context at
each inner node, and their leaves provide the distribution
to be used to encode the corresponding feature of a sound.
More precisely the model (class) is allowed to query a
fixed, finite a set of candidate contexts. A context is a
triplet (L,P, F ), where L is the level (source or target),
P is a position relative to what we are currently encoding,
and F is one of the possible features found at that position.
An example of allowed candidate positions is given in Fig-
ure 3. In this setup, we have 2 levels × 8 positions × 2–6

Context Positions
I itself, possibly dot

-P previous position, possibly dot
–S previous non-dot symbol
–K previous consonant
–V previous vowel
+S previous or self non-dot symbol
+K previous or self consonant
+V previous or self vowel

... (other contexts possible)

Figure 3. Context positions that a feature tree may query.

features ≈ 80 candidate contexts, one of which defines an
inner node of a feature tree. We can therefore encode each
tree using one bit per node to indicate whether it is a leaf
or not, plus about log 80 bits for each inner node to spec-
ify the context on which it splits. For a model class C, we
need to encode all of its 18 trees in this way, the resulting
total code-length we denote L(C).

The second part of the code-length comes from en-
coding the aligned data using model class C. We encode
the feature in some fixed order, type first for it determines
which other features need to be encoded. For each sound
and each feature, we take a path from the root of the corre-
sponding tree of C to a leaf, following at each inner node
the branch that corresponds to the current context which
is being queried. For example, when encoding feature X
(voicedness) of a symbol σ in the source language we may
arrive at a node given by (L,P, F ) = (target,−K,M)
querying the manner of articulation of the previous con-
sonant on the target level. This value (any manner of ar-
ticulation or ’n/a’ if there is no consonant on the target
level between the current position and the beginning of
the word) determines the edge we follow down the tree.

Each path from the root of a tree to a low-entropy leaf
can be interpreted as as rule of phonetic correspondence.
The path describes a contextual condition, the leaf gives
the correspondence itself. High-entropy leaves represent
variation that the model cannot explain.

In this way, all features of all symbols arrive at some
node in the corresponding tree. We encode this data at
each leaf independent of all other leaves using the normal-
ized maximum likelihood (NML) distribution [8]. As the
data at each leaf is multinomial, with cardinality |F |—the
number of values feature F can take on—the correspond-
ing code-length can be computed in linear time [9].

When C = {T L
F } consists of trees T L

F for level L and
feature F , and D is the aligned corpus such that D|L,F,`

is the portion arriving at a leaf ` ∈ T L
F , then the overall

code-length for D using C is

L(D, C) = L(C) +
∑
L

∑
F

∑
`

LNML(D|L,F,`). (1)

As implied, LNML(D|L,F,`) is the multinomial stochas-
tic complexity of the restricted data D|L,F,`. This code-
length is the criterion to be minimized by the learning al-
gorithm.

4. LEARNING

We start with an initial random alignment for each pair of
words in the corpus. We then alternatively re-build the de-
cision trees for all features on source and target levels as
described below, and re-align all word pairs in the corpus
using standard dynamic-programming, an analog proce-
dure to the one described in [4]. Both of these operations
decrease code-length. We continue until we reach conver-
gence.

Given a complete alignment of the data, for each level
L and feature F we need to build a decision tree. We
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want to minimize the MDL criterion (1), the overall code-
length. We do so in a greedy fashion by iteratively split-
ting the level-feature restricted data D|L,F according to
the cost-optimal decision (context to split upon). We start
out by storing D|L,F at the root node of the tree, e.g., for
the voicedness feature X in Estonian (aligned to Finnish)
we store data with counts:

+ 801
- 821

In this example, there are 1622 occurrences of Estonian
consonants in the data, 801 of which are voiced. The best
split the algorithm found was on (Source, I, X), resulting
in three new children. The data now splits according to
this context into three subsets with counts:

+
+ 615
- 2

-
+ 135
- 764

n/a
+ 51
- 55

For each of these new nodes we split further, until no fur-
ther drop in total code-length can be achieved. A split
costs about log 80 plus the number of decision branches in
bits, the achieved gain is the drop in the sum of stochastic
complexities at the leaves obtained by splitting the data.

5. EVALUATION

We present two views on evaluation: a strict view and an
intuitive view. From a strictly information-theoretic point
of view, a sufficient condition to claim that model (class)
M1 is better thanM2, is thatM1 yields better compression
of the data. Figure 4 shows the absolute costs (in bits) for
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Figure 4. Comparison of code-lengths achieved by con-
text model (Y-axis) and 1-1 baseline model (X-axis).

all language pairs1. The context model always has lower
cost than the 1-1 baseline presented in [4]. In figure 5,
we compare the context model against standard data com-
pressors, Gzip and Bzip, as well as models from [4], tested
on over 3200 Finnish-Estonian word pairs from SSA [3].
Gzip and Bzip need not encode any alignment, but neither
can they exploit correspondence of sounds. These com-

1The labels appearing in the figures for the 10 Uralic lan-
guages used in the experiments are: est=Estonian, fin=Finnish,
khn=Khanty, kom=Komi, man=Mansi, mar=Mari, mrd=Mordva,
saa=Saami, udm=Udmurt, unk/ugr=Hungarian.
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parisons confirm that the new model finds more regularity
in the data than the baseline model does, or an off-the-
shelf data compressor, which has no knowledge that the
words in the data are etymologically related.

For a more intuitive evaluation of the improvement in
the model quality, we can compare the models by using
them to impute unseen data. For a given model, and a lan-
guage pair (L1, L2)—e.g., (Finnish, Estonian)—hold out
one word pair, and train the model on the remaining data.
Then show the model the hidden Finnish word and let it
impute (i.e., guess) the corresponding Estonian. Imputa-
tion can be done for all models with a simple dynamic
programming algorithm, very similar to the one used in
the learning phase. Formally, given the hidden Finnish
string, the imputation procedure selects from all possible
Estonian strings the most probable Estonian string, given
the model. Finally, we compute an edit distance (e.g., the
Levenshtein distance) between the imputed string and the
correct withheld Estonian word. We repeat this procedure
for all word pairs in the (L1, L2) data set, sum the edit dis-
tances, and normalize by the total size (number of sounds)
of the correct L2 data—giving the Normalized Edit Dis-
tance: NED(L2|L1,M) from L1 to L2, under modelM .
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and “two-part 1-1” model (X-axis).
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The NED indicates how much regularity the model has
captured. We use NED to compare models across all lan-
guages, Figure 6 compares the context model to the “two-
part 1-1” model from [4]. Each of the 10 · 9 points is a
directed comparison of the two models: the source lan-
guage is indicated in the legend, and the target language is
identified by the other endpoint of the segment on which
the point lies. The further away a point is from the di-
agonal, the greater the advantage of one model over the
other.

The context model always has lower cost than the base-
line, and lower NED in 88% of the language pairs. This is
an encouraging indication that optimizing the code length
is a good approach—the models do not optimize NED di-
rectly, and yet the cost correlates with NED, which is a
simple and intuitive measure of model quality.

A similar use of imputation was presented in [5] as
a kind of cross-validation. However, the novel, normal-
ized NED measure we introduce here provides yet an-
other inter-language distance measure (similarly to how
NCD was used in [4]). The NED (distances) can be used
to make inferences about how far the languages are from
each other, via algorithms for drawing phylogenetic trees.
The pairwise NED scores were fed into the NeighborJoin
algorithm, to produce the phylogeny shown in Fig. 7.

Figure 7. Finno-Ugric tree induced by imputation and nor-
malized edit distances (via NeighborJoin)

To compare how far this is from a “gold-standard”,
we can use, for example, a distance measure for unrooted,
leaf-labeled (URLL) trees found in [10]. The URLL dis-
tance between this tree and the tree shown in Fig. 1 is 0.12,
which is quite small. Comparison with a tree in which
Mari is not coupled with either Mordva or Permic—which
is currently favored in the literature on Uralic linguistics—
makes it a perfect match.

6. DISCUSSION AND FUTURE WORK

We have presented a feature-based context-aware MDL
alignment method and compared it against earlier models,
both in terms of compression cost and imputation power.
Language distances induced by imputation allow building
of phylogenies. The algorithm takes only an etymological

data set as input, and requires no further assumptions. In
this regard, it is as objective as possible, given the data
(the data set itself, of course, may be highly subjective).

To our knowledge, this work represents a first attempt
to capture longer-range context in etymological modeling,
where prior work admitted minimum surrounding context
for conditioning the edit rules or correspondences.
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Griffiths, and Dan Klein, “A probabilistic approach
to diachronic phonology,” in Proceedings of the
2007 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Nat-
ural Language Learning (EMNLP-CoNLL), Prague,
June 2007, pp. 887–896.

[6] David Hall and Dan Klein, “Large-scale cognate re-
covery,” in Empirical Methods in Natural Language
Processing (EMNLP), 2011.

[7] Peter Grünwald, The Minimum Description Length
Principle, MIT Press, 2007.

[8] Jorma Rissanen, “Fisher information and stochas-
tic complexity,” IEEE Transactions on Information
Theory, vol. 42, no. 1, pp. 40–47, January 1996.

[9] Petri Kontkanen and Petri Myllymäki, “A linear-
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ABSTRACT
The relaxed Hilberg conjecture is a proposition about
natural language which states that mutual information
between two adjacent blocks of text grows according to
a power law in function of the block length. In the paper
two mathematical results connected to this conjecture are
reviewed. First, we exhibit an example of a stochastic
process, called the Santa Fe process, which is motivated
linguistically and for which the mutual information grows
according to a power law. Second, we demonstrate
that a power law growth of mutual information implies
a power law growth of vocabulary. The latter statement is
observed for texts in natural language and called Herdan’s
law.

1. INTRODUCTION

It is often assumed that texts in natural language may be
modeled by a stationary process and the entropy a random
text can be determined [1]. More specifically, in 1990,
German telecommunications engineer Wolfgang Hilberg
conjectured that the entropy of a random text in natural
language satisfies

H(Xn
1 ) ∝ nβ , (1)

where Xi are characters of the random text, Xm
n =

(Xn, Xn+1, ..., Xm) are blocks of consecutive characters,
H(X) = E [− logP (X)] is the entropy of a discrete
variable X , and β ∈ (0, 1) [2]. Hilberg’s conjecture
was based on an extrapolation of Shannon’s seminal
experimental data [3], which contained the estimates of
conditional entropy for blocks of n ≤ 100 characters.

Statement (1) implies that the entropy rate h =
limn→∞H(Xn

1 )/n equals 0. This in turn implies asymp-
totic determinism of utterances, which does not sound
plausible. A more plausible modification of statement (1)
is

I(Xn
1 ;X2n

n+1) ∝ nβ , (2)

where I(X;Y ) = H(X) +H(Y )−H(X,Y ) is the mu-
tual information between variables X and Y . We notice
that relationship (2) arises for entropy

H(Xn
1 ) = Anβ + hn (3)

where h can be positive. Relationship (2) will be called
the relaxed Hilberg conjecture.

In this paper, we will review some previous results of
ours that concern two issues:

1. We exhibit an example of a stochastic process,
called Santa Fe process, which is motivated lin-
guistically and which satisfies relationship (2)
asymptotically [4].

2. We demonstrate that relationship (2) implies that
the text of length n contains at least nβ/ log n dif-
ferent words, under a certain plausible definition of
a word [5]. Indeed, the power-law growth of the vo-
cabulary is empirically observed for texts in natural
language and called Herdan’s law [6].

In our opinion, these results shed some light on probabilis-
tic modeling of natural language.

2. THE SANTA FE PROCESS

Processes that satisfy the relaxed Hilberg conjecture arise
in a very simple setting that resembles what may actually
happen in natural language. Suppose that each statement
Xi of a text in natural language can be represented as
a pair Xi = (k, z) which states that the k-th proposition
in some abstract enumeration assumes Boolean value
z. Moreover, suppose that there is a stochastic process
(Ki)i∈Z and a random field (Zik)i∈Z,k∈N such that if
Xi = (k, z) then Ki = k and Zik = z. The process
(Ki)i∈Z will be called the selection process and the field
(Zik)i∈Z,k∈N will be called the object described by text
(Xi)i∈Z. Note that variable Zik has two indices—the
first one refers to the while i at which the statement Xi

is made whereas the second one refers to the proposition
Ki = k, which is either asserted or negated. Observe that
statements that are made in texts fall under two types:

1. Statements about objects Zik = Zk, which do not
change in time (like mathematical or physical con-
stants).

2. Statements about objects Zik 6= Zi+1,k, which
evolve with a varied speed (like culture, language,
or geography).

We will obtain a power-law growth of mutual information
for an appropriate choice of the selection process and the
described object, namely, when the bits of the described
object do not evolve too fast in comparison to their selec-
tion by the selection process.
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In particular, the Santa Fe process (Xi)i∈Z will be de-
fined as a sequence of random statements

Xi = (Ki, Zi,Ki
), (4)

where processes (Ki)i∈Z and (Zik)i∈Z with k ∈ N are
independent and distributed as follows. First, variables
Ki are distributed according to the power law

P (Ki = k) = k−1/β/ζ(β−1), (Ki)i∈Z ∼ IID, (5)

where β ∈ (0, 1) and ζ(x) =
∑∞
k=1 k

−x is the zeta func-
tion. Second, each process (Zik)i∈Z is a Markov chain
with the marginal distribution

P (Zik = 0) = P (Zik = 1) = 1/2 (6)

and the cross-over probabilities

P (Zik = 0|Zi−1,k = 1) = P (Zik = 1|Zi−1,k = 0) = pk.
(7)

The name “Santa Fe process” has been chosen since the
author discovered this process during a stay at the Santa
Fe Institute.

Observe that the description given by the Santa Fe pro-
cess is strictly repetitive for pk = 0: if two statements
Xi = (k, z) and Xj = (k′, z′) describe bits of the same
address (k = k′) then they always assert the same bit value
(z = z′). In this case the Santa Fe process is nonergodic.
For strictly positive pk the description is no longer strictly
repetitive and the Santa Fe process is mixing [4].

By the following result, the Santa Fe process satisfies
relationship (2) asymptotically:

Theorem 1 ([4]) Suppose limk→∞ pk/P (Ki = k) = 0.
Then the mutual information for the Santa Fe process
obeys

lim
n→∞

I(Xn
1 ;X2n

n+1)
nβ

=
(2− 2β)Γ(1− β)

[ζ(β−1)]β
. (8)

Some processes over a finite alphabet which also sat-
isfy relationship (2) asymptotically can be constructed by
stationary coding of the Santa Fe process [4].

3. VOCABULARY GROWTH

In the second turn, we will show that the relaxed Hilberg
conjecture can be related to the number of distinct words
appearing in texts. It has been observed that words in nat-
ural language texts correspond in a good approximation to
nonterminal symbols in the shortest grammar-based en-
coding of those texts [7, 8, 9]. Complementing this ob-
servation, we will demonstrate that relationship (2) con-
strains the number of distinct nonterminal symbols in the
shortest grammar-based encoding of the random text.

A short introduction to grammar-based coding is in
need. Briefly speaking, grammar-based codes compress
strings by transforming them first into special grammars,
called admissible grammars [10], and then encoding the
grammars back into strings according to a fixed simple

method. An admissible grammar is a context-free gram-
mar that generates a singleton language {w} for some
string w ∈ X∗ [10]. In an admissible grammar, there is
exactly one rule per nonterminal symbol and the nonter-
minals can be ordered so that the symbols are rewritten
onto strings of strictly succeeding symbols [10]. Hence,
such a grammar is given by its set of production rules

A1 → α1,
A2 → α2,
...,
An → αn

 , (9)

where A1 is the start symbol, other Ai are secondary non-
terminals, and the right-hand sides of rules satisfy αi ∈
({Ai+1, Ai+2, ..., An} ∪ X)∗.

An example of an admissible grammar is
A1 7→ A2A2A4A5dear_childrenA5A3all.
A2 7→ A3youA5

A3 7→ A4_to_
A4 7→ Good_morning
A5 7→ ,_

 ,

with the start symbol A1, which produces the song

Good morning to you,
Good morning to you,
Good morning, dear children,
Good morning to all.

For the shortest grammar-based encoding of a longer text
in natural language, secondary nonterminals Ai often
match the word boundaries, especially if it is required
that these nonterminals are defined using only terminal
symbols [9].

In the following, V(w) will denote the number of dis-
tinct nonterminal symbols in the shortest grammar-based
encoding of a text w. (The exact definition of the short-
est grammar-based encoding, called admissibly minimal,
is given in [5].) To connect the mutual information with
V(w), we introduce another quantity, namely the length
of the longest nonoverlapping repeat in a text w:

L(w) := max {|s| : w = x1sy1 = x2sy2 ∧ x1 6= x2} ,
(10)

where s, xi, yi ∈ X∗. Using this concept, for processes
over a finite alphabet we obtain this proposition.

Theorem 2 ([5]) Let (Xi)i∈Z be a stationary process
over a finite alphabet. Assume that inequality

lim inf
n→∞

I(Xn
1 ;X2n

n+1)
nβ

> 0 (11)

holds for some β ∈ (0, 1) and

sup
n≥2

E
(

L(Xn
1 )

f(n)

)q
<∞, ∀q > 0, (12)

holds for some function f(n). Then we have

lim sup
n→∞

E

(
V(Xn

1 )
nβf(n)−1

)p
> 0, ∀p > 1. (13)
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An example of a process that satisfies the hypothesis
of Theorem 2 with f(n) = log n can be constructed by
stationary coding of the Santa Fe process [11, 4]. How-
ever, for texts in natural language we have checked that
there holds an empirical law L(Xn

1 ) ≈ logα n, where
α ≈ 2 ÷ 3 [12]. It is an interesting open question how to
construct processes which satisfy both (11) and L(Xn

1 ) ≈
logα n.

4. CONCLUSION

We have discussed some constructions and theorems for
discrete-valued processes with long memory. Our results
have very natural linguistic interpretations. We believe
that the Santa Fe process deserves further investigation.
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INFORMATION-THEORETIC PROBABILITY COMBINATION WITH
APPLICATIONS TO RECONCILING STATISTICAL METHODS

David R. Bickel, University of Ottawa

1. MOTIVATION

The analysis of biological data often requires
choices between methods that seem equally ap-
plicable and yet that can yield very different re-
sults. This occurs not only with the notorious
problems in frequentist statistics of condition-
ing on one of multiple ancillary statistics and
in Bayesian statistics of selecting one of many
appropriate priors, but also in choices between
frequentist and Bayesian methods, in whether to
use a potentially powerful parametric test to an-
alyze a small sample of unknown distribution, in
whether and how to adjust for multiple testing,
and in whether to use a frequentist model aver-
aging procedure. Today, statisticians simultane-
ously testing thousands of hypotheses must of-
ten decide whether to apply a multiple compar-
isons procedure using the assumption that the p-
value is uniform under the null hypothesis (the-
oretical null distribution) or a null distribution
estimated from the data (empirical null distribu-
tion). While the empirical null reduces estima-
tion bias in many situations [1], it also increases
variance [2] and can substantially increase bias
when the data distributions have heavy tails [3].
Without any strong indication of which method
can be expected to perform better for a particular
data set, combining their estimated false discov-
ery rates or adjusted p-values may be the safest
approach.

Emphasizing the reference class problem, [4]
pointed out the need for ways to assess the ev-
idence in the diversity of statistical inferences
that can be drawn from the same data. Previ-

ous applications of p-value combination have in-
cluded combining inferences from different an-
cillary statistics [5], combining inferences from
more robust procedures with those from proce-
dures with stronger assumptions, and combin-
ing inferences from different alternative distri-
butions [6]. However, those combination proce-
dures are only justified by a heuristic Bayesian
argument and have not been widely adopted. To
offer a viable alternative, the problem of com-
bining conflicting methods is framed herein in
terms of probability combination.

Most existing methods of automatically com-
bining probability distributions have been designed
for the integration of expert opinions. For exam-
ple, [7], [8], and [9] proposed combining distri-
butions to minimize a weighted sum of Kullback-
Leibler divergences from the distributions being
combined, with the weights determined subjec-
tively, e.g., by the elicitation of the opinions of
the experts who provided the distributions or by
the extent to which each expert is considered
credible. Under broad conditions, that approach
leads to the linear combination of the distribu-
tions that is defined by those weights [7, 9].

Such linear opinion pools also result from
this marginalization property: any linearly com-
bined marginal distribution is the same whether
marginalization or combination is carried out first
[10]. The marginalization property forbids cer-
tain counterintuitive combinations of distributions,
including any combination of distributions that
differs in a probability assignment from the unan-
imous assignment of all distributions combined
[11, p. 173]. Combinations violating the marginal-
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ization property can be expected to perform poorly
as estimators regardless of their appeal as distri-
butions of belief. On the other hand, invariance
to reversing the order of Bayesian updating and
distribution combination instead requires a log-
arithmic opinion pool, which uses a geometric
mean in place the arithmetic mean of the lin-
ear opinion pool; see, e.g., [12, §4.11.1] or [13].
While that property is preferable to the marginal-
ization property from the point of view of a Bayesian
agent making decisions on the basis of indepen-
dent reports of other Bayesian agents, it is less
suitable for combining distributions that are highly
dependent or that are distribution estimates rather
than actual distributions of belief.

2. GAME-THEORETIC FRAMEWORK

Like the opinion pools of Section 1, the strat-
egy introduced in [14] is intended for combin-
ing distributions based on the same data or in-
formation as opposed to combining distributions
based on independent data sets. However, to
relax the requirement that the distributions be
provided by experts, the weights are optimized
rather than specified. While the new strategy
leads to a linear combination of distributions,
the combination hedges by including only the
most extreme distributions rather than all of the
distributions. In addition, the game leading to
the hedging takes into account any known con-
straints on the true distribution. (This game is
distinct from those of [15, 16], which apply [17]
to blending frequentist and Bayesian statistical
methods.)

The game that generates the hedging strat-
egy is played between three players: the mech-
anism that generates the true distribution (“Na-
ture”), a statistician who never combines distri-
butions (“Chooser”), and a statistician who is
willing to combine distributions (“Combiner”).
Nature must select a distribution that complies
with constraints known to the statisticians, who
want to choose distributions as close as possi-
ble to the distribution chosen by Nature. Other
things being equal, each statistician would also
like to select a distribution that is as much bet-
ter than that of the other statistician as possi-
ble. Thus, each statistician seeks primarily to

come close to the truth and secondarily to im-
prove upon the distribution selected by the other
statistician. Combiner has the advantage over
Chooser that the former may select any distri-
bution, whereas the latter must select one from
a given set of the distributions that estimate the
true distribution or that encode expert opinion.
On the other hand, Combiner is disadvantaged
in that the game rules specify that Nature seeks
to maximize the gain of Chooser albeit with-
out concern for the gain of Combiner. Since
Nature favors Chooser without opposing Com-
biner, the optimal strategy of Combiner is one
of hedging but is less cautious than the mini-
max strategies that are often optimal for typi-
cal two-player zero-sum games against Nature.
The distribution chosen according to the strat-
egy of Combiner will be considered the combi-
nation of the distributions available to Chooser.
The combination distribution is a function not
only of the combining distributions but also of
the constraints on the true distribution.

[14] encodes the game and strategy described
above in terms of Kullback-Leibler loss and presents
its optimal solution as a general method of com-
bining distributions. The special case of com-
bining discrete distributions is summarized in the
next section. A framework for using the pro-
posed combination method to resolve method con-
flicts in point and interval estimation, hypoth-
esis testing, and other aspects of statistical data
analysis appear in [14] with an application to the
combination of three false discovery rate meth-
ods for the analysis of microarray data.

3. SPECIAL CASE: COMBINING
DISCRETE DISTRIBUTIONS

Let P denote the set of probability distributions
on
(
Ξ, 2Ξ

)
, where Ξ is a finite set. It is written

as Ξ = {0, 1, ..., |Ξ| − 1} without loss of gener-
ality. Then the information divergence of P ∈ P
with respect to Q ∈ P reduces to

D (P ||Q) =
∑
i∈Ξ

P ({i}) log
P ({i})
Q ({i}) .

For any P ∈ P and the random variable ξ of
distribution P , the |Ξ|-tuple

T (P ) = (P (ξ = 0) , P (ξ = 1) , . . . , P (ξ = |Ξ| − 1))
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will be called the tuple representing P .
Consider P? = {Pφ : φ ∈ Φ}, a nonempty

subset of P . Every φ ∈ Φ corresponds to a
different random variable and thus to a different
|Ξ|-tuple.

Lemma. Let P? denote a nonempty, finite sub-
set of P , and let extP? denote the set of dis-
tributions that are represented by the extreme
points of the convex hull of the set of tuples rep-
resenting the members of P?. If there are a Q ∈
P and a C > 0 such that D (P ?||Q) = C for all
P ? ∈ extP?, then Q is the centroid of P?.
Proof. As an immediate consequence of what
[18] labels “Theorem (Csiszár)” and “Theorem
1,”

min
P ′′∈P

max
P ′∈P?

D (P ′||P ′′) = C.

By definition, the centroid is the solution of that
minimax redundancy problem.

The Theorem in [14] that connects the lemma
to the following corollary is based on the redundancy-
capacity theorem, the celebrated relationship be-
tween capacity and minimax redundancy. The
redundancy-capacity theorem was presented by
R. G. Gallager in 1974 [19, Editor’s Note] and
published as [20] and [21]; cf. [22]. [23, The-
orem 13.1.1], [24, §5.2.1], and [25, Problem 8.1]
provide useful introductions. The extension from
discrete distributions to general probability mea-
sures ([26]; [27]) is exploited in [14].

The combination of a set of probabilities of
the same hypothesis or event is simply the linear
combination or mixture of the highest and low-
est of the plausible probabilities in the set such
that the mixing proportion is optimal:

Corollary. Let P+ denote the combination of
the distributions in P̈ ⊆ P with truth constrained
by Ṗ ⊆ P . Suppose c distributions on

({0, 1} , 2{0,1})
are to be combined

(
P̈ =

{
P̈1, ..., P̈c

})
, and let

Ṗ0 =
{
Ṗ ({0}) : Ṗ ∈ Ṗ

}
and P̈ , P̈ ∈ P such

that P̈ ({0}) = min P̈i ({0}) and P̈ ({0}) =
max P̈i ({0}) . If there is at least one i ∈ {1, ..., c}
for which P̈i ({0}) ∈ Ṗ0 holds, then P+ = w+P̈+

(1− w+) P̈ , where w+ =

arg sup
w∈[0,1]

(
w∆

(
P̈ ||w

)
+ (1− w) ∆

(
P̈ ||w

))
;

∆ (•||w) = D
(
•||wP̈ + (1− w) P̈

)
.
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Information-Theoretic Value of Evidence Analysis Using Probabilistic Expert Systems 

Anjali Mazumder (EDMI Services Ltd., Warwick (from 01/09/12)), Steffen Lauritzen (Oxford)  

The evaluation and interpretation of evidence is often made under uncertainty where the task of 

reasoning involves estimating unknown quantities from some given observations. There is often a 

quest for data to reduce uncertainty. Forensic scientists are often called upon in courts to give 

expert testimony in a court of law or public enquiry, e.g. the source of a DNA sample. Their 

evaluation and interpretation of the evidence is often under scrutiny and they are often asked to 

justify their decision-making process. The task of decision-making, evaluating, and interpreting the 

evidence is further tested when there are multiple sources of evidence which may or may not relate 

to the same query. Information is seldom cost free and therefore there is a need to evaluate 

beforehand whether it is worthwhile to acquire and to decide which (sources of information) to 

consult that would optimise the desired goal (i.e. reduction in uncertainty about the inference). 

Using information-theoretic concepts, Lauritzen and Mazumder (2008) defined a value of evidence  

(VOE) criterion Iq as a general measure of informativeness for any forensic query Q and collection of 

evidence X1,…,XK where the probability distribution of the query (given evidence) is of interest. 

When there are multiple sources of information, a decision-theoretic framework provides a 

systematic approach to considering which test(s) to perform that most contributes to reducing 

uncertainty regarding the query. A probabilistic network formulation provides an attractive platform 

for the graph-theoretic representation of the VOE problem and eases the laborious calculation of 

marginal and conditional probabilities of interest. When the configuration space for exact 

computations and exhaustive searching is infeasible, Monte Carlo sampling methods are employed. 

The VOE criterion Iq, having a solid theoretical basis, has been directly applied to a variety of 

planning problems in forensic genetics to determine the quantity and choice of individuals and 

genetic markers to type to gain sufficient information for evaluation and interpretation (Mazumder, 

2010). This approach is extended to consider other complex evidential reasoning cases involving 

multiple evidence types in which the graph modular structure and conditional independence 

properties are exploited to aid the decision-making and reasoning process. This research aims to 

contribute in three ways: (1) developing computational methods in VOE analysis using PESs, (2) 

developing a decision-theoretic framework for planning and inference in the evaluation of complex 

evidence structures, and advancing the evaluation and interpretation of forensic evidence methods.  
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ABSTRACT

The behavior of many complex physical systems is af-
fected by a variety of phenomena occurring at different
temporal scales. Time series data produced by measuring
properties of such systems often mirrors this fact by ap-
pearing as a composition of signals across different time
scales. When the final goal of the analysis is to model the
individual phenomena affecting a system, it is crucial to
be able to recognize the right temporal scales and to sepa-
rate the individual components of the data. We introduce
a solution to this challenge based on a combination of
the Minimum Description Length (MDL) principle, fea-
ture selection strategies, and convolution techniques from
the signal processing field. As a result, we show that our
algorithm produces a good decomposition of a given time
series and, as a side effect, builds a compact representa-
tion of its identified components.

1. INTRODUCTION

Our work [5] is concerned with the analysis of sensor data.
When monitoring complex physical systems over time,
one often finds multiple phenomena in the data that work
on different time scales. If one is interested in analyzing
and modeling these individual phenomena, it is crucial to
recognize these different scales and separate the data into
its underlying components. Here, we present a method for
extracting the time scales of various phenomena present in
large time series.

The need for analyzing time series data at multiple
time scales is nicely demonstrated by a large monitoring
project in the Netherlands, called InfraWatch [4]. In this
project, we employ a range of sensors to measure the dy-
namic response of a large Dutch highway bridge to vary-
ing traffic and weather conditions. When viewing this data
(see Fig. 1, upper plot), one can easily distinguish various
transient events in the signal that occur on different time
scales. Most notable are the gradual change in strain over
the course of the day (as a function of the outside temper-
ature, which influences stiffness parameters of the con-
crete), a prolonged increase in strain caused by rush hour
traffic congestion, and individual bumps in the signal due
to cars and trucks traveling over the bridge. In order to
understand the various changes in the sensor signal, one
would benefit substantially from separating out the events
at various scales. The main goal of the work described

here is to do just that: we consider the temporal data as a
series of superimposed effects at different time scales, es-
tablish at which scales events most often occur, and from
this we extract the underlying signal components.

We approach the scale selection problem from a Min-
imum Description Length [1] (MDL) perspective. The
motivation for this is that we need a framework in which
we can deal with a wide variety of representations for
scale components. Our main assumption is that separat-
ing the original signal into components at different time
scales will simplify the shape of the individual compo-
nents, making it easier to model them separately. Our re-
sults show that, indeed, these multiple models outperform
(in terms of MDL score) a single model derived from the
original signal. While introducing multiple models incurs
the penalty of having to describe them, there are much
fewer ‘exceptions’ to be described compared to the single
model, yielding a lower overall description length.

The analysis of time scales in time series data is of-
ten approached from a scale-space perspective, which in-
volves convolution of the original signal with Gaussian
kernels of increasing size [6] to remove information at
smaller scales. By subtracting carefully selected com-
ponents of the scale-space, we can effectively cut up the
scale space into k ranges. In other words, signal process-
ing offers methods for producing a large collection of de-
rived features, and the challenge we face in this paper is
how to select a subset of k features, such that the original
signal is decomposed into a set of meaningful components
at different scales.

Our approach applies the MDL philosophy to vari-
ous aspects of modeling: choosing the appropriate scales
at which to model the components, determining the op-
timal number of components (while avoiding overfitting
on overly specific details of the data), and deciding which
class of models to apply to each individual component.
For this last decision, we propose two classes of models
representing the components respectively on the basis of
a discretization and a segmentation scheme. For this last
scheme, we allow three levels of complexity to approx-
imate the segments: piecewise constant approximations,
piecewise linear approximations, as well as quadratic ones.
These options result in different trade-offs between model
cost and accuracy, depending on the type of signal we are
dealing with.
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A useful side product of our approach is that it iden-
tifies a concise representation of the original signal. This
representation is useful in itself: queries run on the de-
composed signal may be answered more quickly than when
run on the original data. Furthermore, the parameters of
the encoding may indicate useful properties of the data as
well.

2. PRELIMINARIES

We deal with finite sequences of numerical measurements
(samples), collected by observing some property of a sys-
tem with a sensor, and represented in the form of time
series as defined below.

Definition 1. A time series of length n is a finite sequence
of values x = x[1], . . . , x[n] of finite precision.1 A subse-
quence x[a : b] of x is defined as follows:

x[a : b] = (x[a], x[a+ 1], . . . , x[b]), a < b

We also assume that all the considered time series have no
missing values and that their sampling rate is constant.

2.1. The Scale-Space Image

The scale-space image [6] is a scale parametrization tech-
nique for one-dimensional signals2 based on the operation
of convolution.

Definition 2. Given a signal x of length n and a response
function (kernel) h of length m, the result of the convolu-
tion x ∗ h is the signal y of length n, defined as:

y[t] =
m/2∑

j=−m/2+1

x[t− j] h[j]

In this paper, h is a Gaussian kernel with mean µ = 0,
standard deviation σ, area under the curve equal to 1, dis-
cretized into m values.3

Given a signal x, the family of σ-smoothed signals Φx
over scale parameter σ is defined as follows:

Φx(σ) = x ∗ gσ , σ > 0

where gσ is a Gaussian kernel having standard deviation
σ, and Φx(0) = x.

The signals in Φx define a surface in the time-scale
plane (t, σ) known in the literature as the scale-space im-
age [3, 6]. This visualization gives a complete description
of the scale properties of a signal in terms of Gaussian
smoothing. For practical purposes, the scale-space image
is quantized across the scale dimension by computing the
convolutions only for a finite number of scale parameters.
More formally, for a given signal x, we fix a set of scale
parameters S = {2i | 0 ≤ i ≤ σmax ∧ i ∈ N} and we
compute Φx(σ) only for σ ∈ S where σmax is such that
Φx(σ) is approximately equal to the mean signal of x.

132-bit floating point values in our experiments.
2From now on, we will use the term signal and time series inter-

changeably.
3To capture almost all non-zero values, we define m = b6σc.

2.2. Scale-Space Decomposition

We define a decomposition scheme of a signal x by con-
sidering adjacent ranges of scales of the signal scale-space
image as below.

Definition 3. Given a signal x and a set of k − 1 scale
parameters C = {σ1, . . . , σk−1} (called the cut-point
set) such that σ1 < ... < σk−1, the scale decomposition
of x is given by the set of component signals Dx(C) =
{x1, ..., xk}, defined as follows:

xi =

 Φx(0)− Φx(σ1) if i = 1
Φx(σi−1)− Φx(σi) if 1 < i < k
Φx(σk−1) if i = k

Note that for k components we require k − 1 cut-points.

3. MDL SCALE DECOMPOSITION SELECTION

Given an input signal x, the main computational challenge
we face is twofold:

• find a good subset of cut-points C such that the re-
sulting k components of the decomposition Dx(C)
optimally capture the effect of transient events at
different scales,

• select a representation for each component, accord-
ing to its inherent complexity.

We propose to use the Minimum Description Length (MDL)
principle to approach this challenge. The two-part MDL
principle states that the best model M to describe the sig-
nal x is the one that minimizes the sum of the description
lengths L(M) + L(x |M).
The possible models depend on the scale decomposition
Dx(C) considered4 and on the representations used for
its individual components. An ideal set of representations
would adapt to the specific features of every single com-
ponent, resulting in a concise summarization of the de-
composition and, thus, of the signal. In order to apply the
MDL principle, we need to define a model MDx(C) for a
given scale decompositionDx(C) and, consequently, how
to compute both L(MDx(C)) and L(x |MDx(C)). The lat-
ter term is the length in bits of the information lost by the
model, i.e., the residual signal x−MDx(C).

Note that, in order to employ MDL, we discretize the
input signal x. Below, we introduce the proposed repre-
sentation schemes for the components. We also define the
bit complexity of the residual and the model selection pro-
cedure.

3.1. Component Representation Schemes

Within our general framework, many different approaches
could be used for representing the components of a de-
composition. In the next paragraphs we introduce two
such methods.

4Including the decomposition formed by zero cut-points (C = ∅),
i.e., the signal itself.
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3.1.1. Discretization-based representation

As a first representation, we propose to consider more
coarse-grained discretizations of the original range of val-
ues. By doing so, similar values will be grouped together
in the same bin. The resulting sequence of integers is com-
pacted further by performing run-length encoding, result-
ing in a string of (v, l) pairs, where l represents the num-
ber of times value v is repeated consecutively. This string
is finally encoded using a Shannon-Fano or Huffman code
(see Section 3.2).

3.1.2. Segmentation-based representation

The main assumption on which we base this method is
that a clear transient event can be accurately represented
by a simple function, such as a polynomial of a bounded
degree. Hence, if a signal contains a number of clear tran-
sient events, it should be possible to accurately represent
this signal with a number of segments, each of which rep-
resented by a simple function.

Given a component xi of length n, let

z(xi) = {t1, t2, ..., tm}, 1 < ti ≤ n

be a set of indexes of the segment boundaries.
Let fit(xi[a : b], di) be the approximation of xi[a : b]

obtained by fitting a polynomial of degree di. Then, we
represent each component xi with the approximation x̂i,
such that:

x̂i[0 : z1] = fit(xi[0 : z1], di)
x̂i[zi : zi+1] = fit(xi[zi : zi+1], di), 1 ≤ i < m
x̂i[zm : n] = fit(xi[zm : n], di)

Note that approximation x̂i is quantized again by reapply-
ing the function Q to each of its values.

For a given k-component scale decomposition Dx(C)
and a fixed polynomial degree for each of its components,
we calculate the complexity in bits of the model MDx(C),
based on this representation scheme, as follows. Each ap-
proximated component x̂i consists of |z(xi)|+1 segments.
For each segment, we need to represent its length and the
di + 1 coefficients of the fitted polynomial. The length lsi
of the longest segment in x̂i is given by

lsi = max(z1 ∪ {zi+1 − zi | 0 < i ≤ m})

We therefore use log2(lsi) bits to represent the segment
lengths, while for the coefficients of the polynomials we
employ floating point numbers of fixed5 bit complexity
c. The MDL model cost is thus defined, omitting minor
terms, as:

L(MDx(C)) =
k∑
i=1

(|z(xi)|+ 1) (dlog2(lsi)e+ c (di + 1))

So far we assumed to have a set of boundaries z(xi), but
we did not specify how to compute them. A desirable

5In our experiments c = 32.

property for our segmentation would be that a segmen-
tation at a coarser scale does not contain more segments
than a segmentation at a finer scale.

The scale space theory assures that there are fewer
zero-crossing of the derivatives of a signal at coarser scales [6].
In our segmentation we use the zero-crossings of the first
and second derivatives.

3.2. Residual Encoding

Given a model MDx(C), its residual r = x − ∑k
i=1 x̂i,

computed over the component approximations, represents
the information of x not captured by the model. Having al-
ready defined the model cost for the two proposed encod-
ing schemes, we only still need to define L(x | MDx(C)),
i.e., a bit complexity L(r) for the residual r.

Here, we exploit the fact that we operate in a quantized
space; we encode each bin in the quantized space with
a code that uses approximately − log(P (x)) bits, where
P (x) is the frequency of the xth bin in our data. The main
justification for this encoding is that we expect that the er-
rors are normally distributed around 0. Hence, the bins
in the discretization that reflect a low error will have the
highest frequency of occurrences; we will give these the
shortest codes. In practice, ignoring small details, such
codes can be obtained by means of Shannon-Fano cod-
ing or Huffman coding; as Hu et al. [2] we use Huffman
coding in our experiments.

3.3. Model Selection

We can now define the MDL score that we are optimizing
as follows:

Definition 4. Given a model MDx(C), its MDL score is
defined as:

L(MDx(C)) + L(r)

In the case of discretization-based encoding, the MDL
score is affected by the cardinality used to encode each
component. In the case of segmentation-based encoding
the MDL score depends on the boundaries of the segments
and the degrees of the polynomials in the representation.
In both cases, also the cut-points of the considered decom-
position affect the final score.

The simplest way to find the model that minimizes this
score is to enumerate, encode and compute the MDL score
for every possible scale-space decomposition and all pos-
sible encoding parameters. This brute-force approach re-
sults to be feasible in practice.

4. EXPERIMENTS

In this section, we experimentally evaluate our method ac-
tual sensor data from a real-world application. For a com-
plete evaluation of the method, including a more system-
atic one over artificial data, please refer to [5].

We consider the strain measurements produced by a
sensor attached to a large highway bridge in the Nether-
lands. The considered time series consists of 24 hours
of strain measurements sampled at 1 Hz (totaling 86, 400
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Figure 1: Signal (top) and top-ranked scale decomposition for the InfraWatch data.

data points). A plot of the data is shown in Figure 1 (top-
most plot). We evaluated all the possible decompositions
up to three components (two cut-points) allowing both the
representation schemes we introduced. In the case of the
discretization-based representations, we limit the possible
cardinalities to 4, 16 and 64. The top-ranked decompo-
sition results in 3 components as shown in the last three
plots in Figure 1. The selected cut-points appear at scales
26 = 64 and 211 = 2048. All three components are repre-
sented with the discretization-based scheme, with a cardi-
nality of respectively 4, 16, and 16 symbols. The decom-
position has an MDL-score of 344, 276, where L(M) =
19, 457 and L(D | M) = 324, 818. The found com-
ponents accurately correspond to physical events on the
bridge. The first component, covering scales lower than
26, reflects the short-term influence caused by passing ve-
hicles and represented as peaks in the signal. Note that
the cardinality selected for this component is the lowest
admissible in our setting (4). This is reasonable consid-
ering that the relatively simple dynamic behavior occur-
ring at these scales, mostly the presence or not of a peak
over a flat baseline, can be cheaply described with 4 or
fewer states without incurring a too large error. The mid-
dle component, covering scales between 26 and 211, re-
flects the medium-term effects caused by traffic jams. The
first component is slightly influenced by the second one,
especially at the start and ending points of a traffic jam.
Finally, the third component captures all the scales greater
than 211, here representing the effect of temperature dur-
ing a whole day. To sum up, the top-ranked decomposi-
tion successfully reflects the real physical phenomena af-
fecting the data. The decompositions with rank 8 or less
all present similar configurations of cut-points and cardi-
nalities, resulting in comparable components where the
conclusions above still hold. The first 2-component de-
composition appears at rank 10 with the cut-point placed
at scale 26, which separates the short-term peaks from all
the rest of the signal (traffic jams and baseline mixed to-
gether). These facts make the result pretty stable as most
of the good decompositions are ranked first.

5. CONCLUSIONS AND FUTURE WORK

We introduced a novel methodology to discover the fun-
damental scale components in a time series in an unsuper-
vised manner. The methodology is based on building can-
didate scale decompositions, defined over the scale-space
image [6] of the original time series, with an MDL-based
selection procedure aimed at choosing the optimal one.

As shown, our approach identifies the relevant scale
components in a relevant real-world application, giving
meaningful insights about the data.

Future work will experiment with diverse representa-
tion schemes and hybrid approaches (such as using combi-
nations of segmentation, discretization and Fourier-based
encodings).
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ABSTRACT

We address the problem of model selection for a multi-
variate source with finite alphabet. Families of Markov
models and model selection algorithms are generalized for
the multivariate case. For Markovian sources our model
selection procedures are consistent in the sense that, even-
tually, as the collected data grows, the sources Markov
model will be retrieved exactly and it will be described
with a minimal number of parameters.

1. INTRODUCTION

Multivariate Markov chains are used for modeling stochas-
tic processes arising on many areas as for example linguis-
tics, biology and neuroscience. There are diverse models
families from which to choose a model for a given data
set. For example Markov chains of order m, variable
length Markov chains (VLMC) see for example (5), (6),
(2) or partition Markov models see (4). On each family,
the selection of a specific Markov model gives informa-
tion about the dependence structure for the dataset.

A recurrent problem is to model multiple streams of
finite memory data with distributions that are suspected
to be dependent or similar or equal. In the case of in-
dependent sources, the interest is to find the differences
and similarities between the distribution of the sources. In
the dependent case we want to find de dependence struc-
ture for the multivariate source. In this paper we propose
a class of Markov models for each of that cases (depen-
dent or independent sources), that generalize the partition
Markov models for multivariate sources. We show pro-
cedures to, given a dataset, select a model in our class
of models, that approximate the joint law of the source.
The procedure are consistent in the sense that if the law
of the source is Markovian, eventually, as the collected
data grow, the source’s Markov model will be retrieved
exactly. This work extend and generalize previous results
about minimal Markov models and context tree models
as in (4), (6), (2), (1) and (3). In section 2 we revisit
the family of partition Markov models. In section 3 we
address the problem of simultaneously modeling multiple
data sources. Finally in section 4 we show a procedure to
estimate the internal structure of dependence between the
coordinates of a multivariate stationary source.

2. MARKOV CHAIN WITH PARTITION L
Let (Xt) be a discrete time, finite memory Markov chain
on a finite alphabet A. Denote the string amam+1 . . . an

by an
m, where ai ∈ A, m ≤ i ≤ n. Let M be the maxi-

mum memory for the process, and S = AM .
For each a ∈ A and s ∈ S,

P (a|s) = Prob(Xt = a|Xt−1
t−M = s);

Definition 2.1. Let (Xt) be a discrete time orderM Markov
chain on a finite alphabet A. We will say that s, r ∈ S are
equivalent (denoted by s ∼p r) if P (a|s) = P (a|r) ∀a ∈
A.
For any s ∈ S, the equivalence class of s is given by
[s] = {r ∈ S|r ∼p s}.
Remark 2.1. The equivalence relationship defines a par-
tition of S. The parts of this partition are the equivalence
classes. The classes are the subsets of S with the same
transition probabilities i.e. s, r ∈ S belongs to different
classes if and only if they have different transition proba-
bilities.

Remark 2.2. We can think that each element of S on the
same equivalence class activates the same random mech-
anism to choose the next element in the Markov chain.

We can define now the a Markov chain with partition L.
Definition 2.2. let (Xt) be a discrete time, orderM Markov
chain on A and let L = {L1, L2, . . . , LK} be a partition
of S. We will say that (Xt) is a Markov chain with parti-
tionL if this partition is the one defined by the equivalence
relationship ∼p introduced by definition 2.1.

Let L = {L1, L2, . . . , LK} be the partition of (Xt)

P (a|Li) = P (a|s), for any s ∈ Li

Remark 2.3. The set of parameters for a Markov chain
over the alphabet A with partition L can be denoted by,

{P (a|L) : a ∈ A,L ∈ L}.
If we know the equivalence relationship for a given Markov
chain, then we need (|A| − 1) transition probabilities for
each class to specify the model. Then the number of pa-
rameters for the model is |L|(|A| − 1).
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2.1. Partition Markov model selection

Let xn
1 be a sample of the process

(
Xt

)
, s ∈ S, a ∈ A

and n > M. We denote by Nn(s, a) the number of occur-
rences of the string s followed by a in the sample xn

1 ,

Nn(s, a) =
∣∣{t : M < t ≤ n, xt−1

t−M = s, xt = a}∣∣, (1)

the number of occurrences of s in the sample xn
1 is de-

noted by Nn(s) and

Nn(s) =
∣∣{t : M < t ≤ n, xt−1

t−M = s}∣∣. (2)

To simplify the notation we will omit the n on Nn.

2.2. A distance in S

Definition 2.3. We define the distance d in S,

d(s, r) =
1

ln(n)

∑
a∈A

{
N(s, a) ln

(
N(s, a)
N(s)

)
+ N(r, a) ln

(
N(r, a)
N(r)

)
− (N(s, a) +N(r, a)) ln

(
N(s, a) +N(r, a)
N(s) +N(r)

))
for any s, r ∈ S.
Proposition 2.1. For any s, r ∈ S,

i. d(s, r) ≥ 0 with equality if and only if N(s,a)
N(s) =

N(r,a)
N(r) ∀a ∈ A,

ii. d(s, r) = d(r, s),

Remark 2.4. d can be generalized to subsets (see (4)).

Theorem 2.1. (Consistence in the case of a Markov source)
Let (Xt) be a discrete time, order M Markov chain on a
finite alphabet A. Let xn

1 be a sample of the process, then
for n large enough, for each s, r ∈ S, d(r, s) < (|A|−1)

2
iff s and r belong to the same class.

Algorithm 2.1. (Partition selection algorithm)
Input: d(s, r)∀s, r ∈ S; Output: L̂n.
B = S
L̂n = ∅
while B 6= ∅

select s ∈ B
define Ls = {s}
B = B \ {s}
for each r ∈ B, r 6= s

if d(s, r) < (|A|−1)
2

Ls = Ls ∪ {r}
B = B \ {r}

L̂n = L̂n ∪ {Ls}
Return: L̂n = {L1, L2, . . . , LK}

If the source is Markovian, for n large enough, the
algorithm returns the partition for the source.

Corollary 2.1. Under the assumptions of Theorem 2.1,
L̂n, given by the algorithm 2.1 converges almost surely
eventually to L∗, where L∗ is the partition of S defined by
the equivalence relationship.

3. GENERALIZED PARTITION MARKOV
MODELS FOR MULTIPLE INDEPENDENT

FINITE MEMORY SOURCES

In this section we extend the family of models for multi-
ple independent sources of data. We also extend our al-
gorithm. As in (4), the procedure is consistent and tight,
for Markovian sources, eventually, as the data grow, the
source’s Markov model will be retrieved exactly and de-
scribed with the minimal number of parameters.

We will consider a dataset which consist of K se-
quences of size nk, for k = 1, ...,K.

3.1. Model family

Let (Xk
t ) for k = 1, ...,K be the K independent finite

memory stochastic processes, all of them stationary and
ergodic. For each process (Xk

t ) let Sk and dk be the state
space and order of the respective Markov model.

Definition 3.1. S = {(s, k) : s ∈ Sk, k = 1, 2, ...,K.}

For each a ∈ A and (s, k) ∈ S,

Pk(a|s) = Prob(Xk
t = a|Xk,t−1

t−M = s);

The models in our family are indexed by the partition
defined in the following equivalence relation.

Definition 3.2. We will say that (s, i), (r, j) ∈ S are
equivalent (denoted by (s, i) ∼P,K (r, j))
if Pi(a|s) = Pj(a|r) ∀a ∈ A. For any (s, i) ∈ S , the
equivalence class of (s, i) is given by [(s, i)] = {(r, j) ∈
S|(r, j) ∼P,K (s, i)}.

We can define now the a set of Markov chain with par-
tition L.

Definition 3.3. let X be a set of K independent Markov
chains on A and let L = {L1, L2, . . . , LK} be a partition
of S. We will say that X is a set of Markov chains with
partition L if this partition is the one defined by the equiv-
alence relationship ∼P,K introduced by definition 3.2.

Remark 3.1. The parameters for a set of independent
Markov chains over the alphabet A with partition L is,

{P (a|L) : a ∈ A, L ∈ L}.,

where P (a|L) = Pi(a|s) for any (i, s) ∈ L.
The number of parameters for the model is |L|(|A|−1).
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3.2. A distance between sequences

Definition 3.4. For any (s, i), (r, j) ∈ S, we define the
distance dK ((s, i), (r, j)) in S as

dK ((s, i), (r, j)) =
1

ln(n)

∑
a∈A

{
Ni(s, a) ln

(
Ni(s, a)
Ni(s)

)
+ Nj(r, a) ln

(
Nj(r, a)
Nj(r)

)
− (Ni(s, a) +Nj(r, a))×
× ln

(
Ni(s, a) +Ni(r, a)
Ni(s) +Nj(r)

)}
,

whereNi(s) andNi(s, a) are the number of times that the
sequences s and sa respectively appear in the sample i.

Proposition 3.1. dK(., .) have the following properties,

i. dK ((s, i), (r, j)) ≥ 0 with equality if and only if
Ni(s,a)
Ni(s)

= Nj(r,a)
Nj(r)

∀a ∈ A,
ii. dK ((s, i), (r, j)) = dK ((r, j), (s, i))),

To simplify the notation and without loss of generality
we will suppose that all the sequences have the same size
n.

Theorem 3.1. (Consistence in the case of Markov sources)
Let X be a set of independent Markov chain of finite or-
der, (xi,n

1 )K
i=1 a size n sample of each process. For each

(s, i), (r, j) ∈ S for n large enough, dK ((s, i), (r, j)) <
|A|−1

2 iff (s, i) and (r, j) belong to the same class.

The same algorithm 2.1 can be used (with dK(., .)) to
estimate the partition for the set of chains.

4. MULTIVARIATE SOURCES

In this section we will consider the case in which we have
a multivariate source with dependent coordinates.

To simplify the notation, we will assume that the par-
tition Markov model is known. Our objective is to obtain
for each part a partition of the set of coordinates on in-
dependent sets. The same procedure can be used to find
subsets of the coordinates that are conditionally indepen-
dent.

Let (Xt) be a Markov chain on A = Bl with par-
tition L. For U = {u1, ...uk} ⊂ {1, 2, ..., l} and a =
(a1, ..., al) ∈ A, define:

i) au = (au1 , ..., auk
),

ii) for any L ∈ L,
P (aU |L) = Prob(XU

t = aU |Xt−1
t−M = s) ∀s ∈ L,

iii) for s ∈ S
Nn(s, aU ) =

∣∣{t : M < t ≤ n, xt−1
t−M = s, xU

t = aU}∣∣,
iv) for L ∈ L

NLn (L, aU ) =
∑
s∈L

Nn(s, aU ).

Example
Consider B = {0, 1, 2} with dimension l = 2, the alpha-
bet will be A = B2 = {0, 1, 2}2. For L ∈ L, we need to
specify P (a|L), this means (|A| − 1) = 8 parameters for
each L. If for a fixed L the first coordinate is independent
from the second then P (a|L) = P (a1|L)P (a2|L) ∀a ∈
A and the number of parameter will be (|B|−1)+(|B|−
1) = 4 for this L.

In general, for A = Bl, fix L ∈ L and a partition IL

of {1, 2, ..., l} in independent coordinates, we have that

P (a|L) =
∏

C∈IL

P (aC |L) ∀a ∈ A

and the number of parameters needed for the part L will
be ∑

C∈I
(|B||C| − 1)

4.1. Conditional dependence structure

Definition 4.1. For each L ∈ L, define IL as de maximal
partition of {1, 2, ...l} such that

P (a|L) =
∏

C∈IL

P (aC |L) ∀a ∈ A.

We will say that IL = {IL}L∈L is the structure of condi-
tional dependence for the process.

4.2. Estimating the conditional dependence structure

Our procedure to estimate IL is based on the Bayesian
information criterion (BIC).

P (xn
1 ) = P (xM

1 )
∏

L∈L,a∈A

∏
C∈IL

P (aC |L)NLn (L,a).

The maxima for
∏

L∈L,a∈A

∏
C∈IL

P (aC |L)NLn (L,a)

is

ML(L, IL, xn
1 ) =

∏
L∈L,a∈A

∏
C∈IL

(
NLn (L, aC)
NLn (L)

)NLn (L,a)

,

and the BIC criterion for ou class of models,

BIC(L, IL, xn
1 ) = ln (ML(L, IL, xn

1 ))

−
∑
L∈L

∑
C∈IL

(|A||C| − 1)
ln(n)

2
.

For a Markovian source the BIC model selection method-
ology is consistent.

4.3. Consistence

Theorem 4.1. Let (Xt) be a Markov chain of order M
over a finite alphabet A, with partition L∗ and structure
of conditional dependence IL∗ . Define,

ILn = arg max
I∈D
{BIC(Ln, I, xn

1 )},

Where D is the set of all possible structures of depen-
dences for A and Ln, then, eventually almost surely as
n→∞,

IL∗ = ILn
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The next Theorem shows that is not necessary to search
for the maxima on D.

Consider any collection of partitions of {1, 2, ...l},

D = {DL}L∈L.

Fix L0 ∈ L and U, V ∈ DL0 , U 6= V. Define DL0,U,V as
the collection of partitions containing the same partitions
than D except DL0 is substituted by

DL0 \ {{U}, {V }} ∪ {U ∪ V }.

Theorem 4.2. Let (Xt) be a Markov chain over A = Bl

with partition L, then,

P (aU∪V |L0) = P (aU |L0)P (aV |L0) ∀a ∈ A

if, and only if, eventually almost surely as n→∞,

BIC(L,DL0,U,V , xn
1 ) < BIC(L,D, xn

1 ).

5. CONCLUSION

In this paper we study two generalizations of previous re-
sults about minimal Markov models to the multivariate
case. First, we consider the case in which we have mul-
tiple independent sources. We model all the sources si-
multaneously and the model selection algorithm returns
not only the set of equivalent states for each source, it
also identify all the states in all sources which can be
considered equivalents between them. In this way, even
strings activating the same random mechanism on differ-
ent sources are identified and classified. The second gen-
eralization correspond to a stationary source with a mul-
tivariate alphabet. In this case we first choose a partition
Markov model and then, for the transition probabilities of
each part, we identify the maximal partition of the set of
coordinates such that the different parts are independent.
A similar procedure and algorithm can be used to find sub-
sets of coordinates which are conditionally independent.
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ABSTRACT

In model selection one attempts to use the data to find
a single ”winning” model, whereas with model averag-
ing (MA) one seeks a smooth compromise across a set of
competing models. Most existing MA methods are based
on estimation of single model weights using some appro-
priate criterion. The problem of selecting the best subset
or subsets of predictor variables is a common challenge
for a regression analyst. The number of candidate mod-
els may become huge and any approach based on estima-
tion of all single weights may become computationally in-
feasible. Our approach is to convert estimation of model
weights into estimation of shrinkage factors with trivial
computational burden. We define the class of shrinkage
estimators in view of MA and show that the estimators
can be constructed using penalized least squares (LS) es-
timation by putting appropriate restrictions on the penalty
function. The relationship between shrinkage and param-
eter penalization provides tools to build up computation-
ally efficient MA estimators which are easy to implement
into practice.

1. THE MODEL

Our framework is the linear model

y = Xβ + Zγ + ε, ε ∼ (0, σ2In), (1)

where X and Z are n×p and n×mmatrices of nonrandom
regressors, (X,Z) is assumed to be of full column-rank
p + m < n, β and γ are p × 1 and m × 1 vectors of
unknown parameters. Our interest is in the effect of X on
y, that is, we want to estimate β while the role of Z is to
improve the estimation of β.

We will work with the canonical form of the model
(1), where z-variables are orthogonalized by writing the
systematic part of the model (1) as

Xβ + Zγ = Xα+ MZγ

= Xα+ Uθ, (2)

where α = β + (X′X)−1X′Zγ,

M = In −P and P = X(X′X)−1X′ (3)

are symmetric idempotent matrices. Since (MZ)′MZ =
Z′MZ is positive definite [15], then there exists a nonsin-
gular matrix C such that [9]

C′Z′MZC = (MZC)′(MZC) = U′U = Im. (4)

In (4) U = MZC denotes the matrix of orthogonal canon-
ical auxiliary regressors. Introducing the canonical auxil-
iary parameters θ = C−1γ we can write in (2)

MZγ = MZCC−1γ = Uθ.

2. MODEL AVERAGING

A least squares MA estimator for β takes the form

β̃ =
M∑
i=0

λiβ̂i =
M∑
i=0

λi(β̂0 −QWiθ̂)

= β̂0 −QWθ̂, (5)

where β̂0 = (X′X)−1X′y,W =
∑M
i=0 λiWi and Q =

(X′X)−1X′ZC. The weights

λi = λi(My) ≥ 0, i = 0, 1, . . . ,M,

are assumed to depend on the least squares residuals My
and

∑M
i=0 λi = 1. Note especially that θ̂ is a function of

My. The selection matrices Wi, 0 ≤ i ≤M are nonran-
dom m ×m diagonal matrices with diagonal elements 0
or 1 whereas W is a random m×m diagonal matrix with
diagonal elements

w = (w1, . . . , wm)′, 0 ≤ wi ≤ 1, i = 1, . . . ,m.

The equivalence theorem of Danilov and Magnus [3]
provides a useful representation for the expectation, vari-
ance and MSE of the estimator β̃ given in (5). The the-
orem was proved under the assumptions that the distur-
bances ε1, . . . , εn are i.i.d. N(0, σ2). By the theorem

MSE(β̃) = E[(β̃ − β)(β̃ − β)′]

= σ2(X′X)−1 + Q[MSE(Wθ̂)]Q′.

The quality of β̃ essentially depends on statistical prop-
erties of the shrinkage estimator Wθ̂ and hence the rela-
tively simple estimator Wθ̂ of θ characterizes the impor-
tant features of the more complicated estimator β̃ of β. It
can be shown (Hansen [8]) that a least squares MA estima-
tor like (5) can achieve lower MSE than any individual
LS estimator.
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3. PENALIZED LS AND SRINKAGE

We introduce a set S of shrinkage estimators for β and
characterize them by using penalized least squares tech-
nique. Then we derive the efficiency bound for the shrink-
age estimators with respect toMSE (mean squared error)
when observations follow the normal distribution. Our
aim is to find estimators whose MSE is uniformly as
close to the efficiency bound as possible. It turns out that
many interesting known estimators, like for example the
soft and firm thresholding estimators, non-negative gar-
rote [2] and the SCAD (smoothly clipped absolute devia-
tion, [6]) estimators belong to this shrinkage class S. On
the other hand, for example the hard thresholding rule (pre
testing) and the ridge estimator do not belong to S.

Fitting the orthogonalized model (2) can be consid-
ered as a two-step least squares procedure [15]. The first
step is to calculate β̂0 = (X′X)−1X′y and to replace y
by y − Xβ̂0 = My, where M is defined in (3). Then
denote z = U′y, and note from the definition of U in (4)
the equality U′M = U′. Then the model (2) takes the
form

z = θ + U′ε, U′ε ∼ (0, σ2Im). (6)

The second step is to estimate θ from the model (6).
Magnus et al. [13] estimated the weights 0 ≤ wi ≤

1, i = 1, . . . ,m in (5) using a Bayesian technique, and
decided on to advocate the Laplace estimator which is of
a shrinkage type. Such estimators are computationally su-
perior to estimators that require estimation of every single
model weight λi in (5). We are now ready to define the
important class S of shrinkage estimators for θ which we
call simply shrinkage estimators.

Definition A real valued estimator δ of θ is a shrinkage
estimator if the following four conditions hold:

(a) 0 ≤ δ(θ̂) ≤ θ̂ for θ̂ ≥ 0,

(b) δ(−θ̂) = −δ(θ̂),

(c) δ(θ̂)/θ̂ is nondecreasing on [0,∞) and

(d) δ(θ̂) is continuous,

where θ̂ is the LS estimator of θ.

In estimation of θ we will use the penalized LS tech-
nique. If the penalty function satisfies proper regularity
conditions, the penalized LS yields a solution which is a
shrinkage estimator of θ. In this approach we choose a
suitable penalty function in order to get a shinkage estima-
tor with good risk properties. The penalized least squares
estimate (PenLS) of θ = (θ1, . . . , θm)′ is the minimizer
of

1
2

m∑
i=1

(zi − θi)2 +
m∑
i=1

pλ(|θi|), (7)

where λ > 0. It is assumed that the penalty function pλ(·)
is

(i) nonnegative,
(ii) nondecreasing and (8)

(iii) differentiable on [0,∞).

Minimization of (7) is equivalent to minimization compo-
nentwise. Thus we may simply minimize

l(θ) =
1
2

(z − θ)2 + pλ(|θ|) (9)

with respect to θ.

Example There are close connections between the PenLS
and variable selection or the PenLS and ridge regression,
for example. Taking theL2 penalty pλ(|θ|) = λ

2 |θ|2 yields
the ridge estimator

θ̌R =
1

1 + ρ
z,

where ρ > 0 depends on λ. The hard thresholding penalty
function

pλ(|θ|) = λ2 − 1
2

(|θ| − λ)2(I(|θ| < λ)

yields the hard thresholding rule

θ̌H = z {I(|z| > λ)}, (10)

where I(·) is the indicator function. Then the minimizer of
the expression (7) is zj{I(|θj| > λ)}, j = 1, . . . ,m, and
it coincides with the best subset selection for orthonormal
designs. In statistics (see e.g. Morris et al. [14]) and in
econometrics (see, e.g. Judge et al. [10]), the hard thresh-
olding rule is traditionally called the pretest estimator.

The following theorem gives sufficient conditions for
the PenLS estimate θ̌ of θ to be a shrinkage estimator. Fur-
ther, the theorem provides the lower bound of the mean
squared error

MSE(θ, θ̌) = E[θ̌(z)− θ]2. (11)

This lower bound is called the efficiency bound.

Theorem 3.1. We assume that the penalty function pλ(·)
satisfies the assumptions (8). We make two assertions.

(i) If the three conditions hold

(1) the function −θ − p′λ(θ) is strictly unimodal
on [0,∞),

(2) p′λ(·) is continuous and nonincreasing on [0,∞),
and

(3) minθ{|θ|+ p′λ(|θ|)} = p′λ(0),

then the PenLS estimate θ̌ of θ belongs to the shrink-
age family S.
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(ii) If the conditions of the assertion (i) hold and z fol-
lows the normal distribution N(0, σ2), where σ2 is
known, the efficiency bound of θ̌ is

inf
θ̌∈S

MSE(θ, θ̌) =
θ2

1 + θ2
. (12)

Note that the pretest estimator θ̌H given in (10) is not
continuous, and hence it does not belong to the class of
shrinkage estimators S. Magnus [11] demonstrates a num-
ber of undesiderable properties of the pretest estimator. It
is inadmissible and there is a range of values for which
the MSE of θ̌H is greater than the MSE of both the
least squares estimator θ̂(z) = z and the null estimator
θ̂(z) ≡ 0. The traditional pretest at the usual 5% level of
significance results in an estimator that is close to having
worst possible performance with respect to the MSE cri-
terion in the neighborhood of the value |θ/σ| = 1 which
was shown to be of crucial importance.

Example The Lq penalty pλ(|θ|) = λ |θ|q, q ≥ 0 results
in a bridge regression [7]. The derivative p′λ(·) of the Lq
penalty is nonincreasing on [0,∞) only when q ≤ 1 and
the solution is continuous only when q ≥ 1. Therefore,
onlyL1 penalty in this family yields a shrinkage estimator.
This estimator is the soft thresholding rule, proposed by
Donoho and Johnstone [4],

θ̌S = sgn(z)(|z| − λ)+, (13)

where z+ is shorthand for max{z, 0}. LASSO [16] is the
PenLS estimate with the L1 penalty in the general least
squares and likelihood settings.

If the PenLS estimators satisfy the conditions of The-
orem 3.1, the efficiency bound is known and the regret of
θ̌(z) can be defined as

r(θ, θ̌) = MSE(θ, θ̌)− θ2

1 + θ2
.

We wish to find an estimator with the desirable property
that its MSE is uniformly close to the infeasible effi-
ciency bound. In theoretical considerations σ2 is assumed
to be known, and hence we can always consider the vari-
able z/σ. Then the expectation E is simply taken with
respect to theN(θ, 1) distribution (cf. Figure 1), and com-
parison of estimators risk performance is done under this
assumption. In practical applications we replace the un-
known σ2 with s2, the estimate of σ2 in the unrestricted
model. Danilov [3] demonstrated that effects of estimat-
ing σ2 are small in case of Laplace estimator. We expect
the approximation to be accurate for other shrinkage esti-
mators too, although more work is needed to clarify this
issue.

3.1. Good PenLS shrinkage estimators

In this subsection we consider properties of two well known
PenLS estimators which are shrinkage estimators. Bruce
and Gao [1] compared the hard and soft thresholding rules

and showed that the hard thresholding rule tends to have
bigger variance than the soft thresholding rule whereas
soft thresholding tends to have bigger bias. To remedy the
drawbacks of hard and soft thresholding, Fan and Li [6]
suggested using continuous differentiable penalty func-
tion defined by

p′λ(|θ|) = λ {I(|θ| ≤ λ) +
(aλ− |θ|)+

(a− 1)λ
I(|θ| > λ)} (14)

for some a > 2 and λ > 0. If the penalty function in (7) is
constant, i.e. p′(|θ|) = 0, then the PenLS takes the form
θ̌(z) ≡ z which is unbiased. Since the SCAD penalty
p′λ(θ) = 0 for θ > aλ, the resulting solution (Fan and Li
[6])

θ̌scad(z) =


sgn (z)(|z| − λ)+, if |z| ≤ 2λ,
(a−1)z−sgn (z)aλ

(a−2) , if 2λ < |z| ≤ aλ,
z, if |z| > aλ

(15)
tends to be unbiased for large values of z. The estimator
(15) can be viewed as a combination of soft thresholding
for ”small” |z| and hard thresholding for ”large” |z|, with
a piecewise linear interpolation inbetween.

Breiman [2] applied the non-negative garrote rule

θ̌G(z) =

{
0, if |z| ≤ λ,
z − λ2/z, if |z| > λ

(16)

to subset selection in regression to overcome the draw-
backs of stepwise variable selection rule and ridge regres-
sion. It is straightforward to show that the soft threshold-
ing (13), SCAD (15) and non-negative garrote (16) esti-
mators belong to the shrinkage class S (cf. Definition).
The ordinary LS (OLS) estimator θ̂(z) ≡ z is a good can-
didate for large z, and hence we wish that for large z an
estimator θ̌(z) is close to z in the sense that z− θ̌(z) con-
verges to zero when |z| increases. It can be readily seen
that the estimators θ̌scad and θ̌G have this property. For
the soft thresholding rule z − θ̌S(z) converges to a posi-
tive constant, but not to zero.

3.2. The Laplace and Subbotin estimators

Magnus [12] addressed the question of finding an estima-
tor of θ which is admissible, has bounded risk, has good
risk performance around θ = 1, and is optimal or near op-
timal in terms of minimax regret when z ∼ N(θ, 1). The
Laplace estimator

θ̂L(z) = z − h(y)c (17)

proved to be such an estimator, when c = log 2 and h(·)
is a given antisymmetric monotonically increasing func-
tion on (−∞,∞) with h(0) = 0 and h(∞) = 1. The
Laplace estimator is the mean of the posterior distribution
of θ|z when a Laplace prior for θ with median(θ) = 0 and
median(θ2) = 1 is assumed. In search of a prior which
appropriately reflects the notion of ignorance, Einmahl et
al. [5] arrived at the Subbotin prior that belongs to the
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Figure 1. MSE of the OLS, the hard thresholding (10),
Laplace (17), SCAD (15) , Subbotin, soft thresholding
estimators (13) and the effieciency bound (12) for the
shrinkage estimators S .

class of reflected gamma densities. In practical applica-
tions they recommended the Subbotin prior

π(θ) =
c2

4
e−c|θ|

1/2

with c = 1.6783 which should stay close to the Laplace
prior.

4. CONCLUDING REMARKS

Many existing MA methods require estimation of every
single model weight. For example, in regression analysis
selection of the best subset from a set of m predictors,
say, requires assessing 2m models, and consequently the
computational burden soon increases too heavy when m
becomes large.

It turns out, that the quality of the least squares MA es-
timator (5) depends on the shrinkage estimator of the aux-
iliary parameter γ. So, estimation of 2m model weights is
converted into estimation ofm shrinkage factors with triv-
ial computational burden. We define the class of shrinkage
estimators in view of MA and show that these shrinkage
estimators can be constructed by putting appropriate re-
strictions on the penalty function. Utilizing the relation-
ship between shrinkage and parameter penalization, we
are able to build up computationally efficient MA estima-
tors which are easy to implement into practice. These esti-
mators include some well known estimators, like the non-
negative garrote of Breiman [2], the lasso-type estimator
of Tibshirani [16] and the SCAD estimator of Fan and Li
[6]. In the simulation experiments we have assessed the
quality of estimators in terms of estimated MSE′s. In
this competition the winners were the SCAD and non-
negative garrote but the Laplace estimator did almost as
well. However, the results of the simulation study are not
reported here.
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ABSTRACT

Consider sequential prediction algorithms that are given
the predictions from a set of models as inputs. If the nature
of the data is changing over time in that different models
predict well on different segments of the data, then adap-
tivity is typically achieved by mixing into the weights in
each round a bit of the initial prior (kind of like a weak
restart). However, what if the favored models in each seg-
ment are from a small subset, i.e. the data is likely to be
predicted well by models that predicted well before? Curi-
ously, fitting such “sparse composite models” is achieved
by mixing in a bit of all the past posteriors. This self-
referential updating method is rather peculiar, but it is effi-
cient and gives superior performance on many natural data
sets. Also it is important because it introduces a long-term
memory: any model that has done well in the past can be
recovered quickly. While Bayesian interpretations can be
found for mixing in a bit of the initial prior, no Bayesian
interpretation is known for mixing in past posteriors.

We build atop the “specialist” framework from the on-
line learning literature to give the Mixing Past Posteri-
ors update a proper Bayesian foundation. We apply our
method to a well-studied multitask learning problem and
obtain a new intriguing efficient update that achieves a sig-
nificantly better bound.

1. INTRODUCTION

We consider sequential prediction of outcomes y1, y2, . . .
using a set of modelsm = 1, . . . ,M for this task. In prac-
tice m could range over a mix of human experts, paramet-
ric models, or even complex machine learning algorithms.
In any case we denote the prediction of model m for out-
come yt given past observations y<t = (y1, . . . , yt−1) by
P (yt|y<t,m). The goal is to design a computationally ef-
ficient predictor P (yt|y<t) that maximally leverages the
predictive power of these models as measured in log loss.
The yardstick in this paper is a notion of regret defined
w.r.t. a given comparator class of models or composite
models: it is the additional loss of the predictor over the
best comparator. For example if the comparator class is
the set of base models m = 1, . . . ,M , then the regret for
a sequence of T outcomes y≤T = (y1, . . . , yT ) is

R :=
T∑

t=1

− lnP (yt|y<t) −
M

min
m=1

T∑
t=1

− lnP (yt|y<t,m).

The Bayesian predictor with uniform model prior has re-
gret at most lnM for all T .

Now assume the nature of the data is changing with
time: in an initial segment one model predicts well, fol-
lowed by a second segment in which another model has
small loss and so forth. For this scenario the natural com-
parator class is the set of partition models which divide the
sequence of T outcomes into B segments and specify the
model that predicts in each segment. By running Bayes
on all exponentially many partition models comprising
the comparator class, we can guarantee regret ln

(
T−1
B−1

)
+

B lnM . The goal then is to find efficient algorithms with
approximately the same guarantee as full Bayes. In this
case this is achieved by the Fixed Share [1] predictor. It
assigns a certain prior to all partition models for which
the exponentially many posterior weights collapse to M
posterior weights that can be maintained efficiently. Mod-
ifications of this algorithm achieve essentially the same
bound for all T , B and M simultaneously [2, 3].

In an open problem Yoav Freund [4] asked whether
there are algorithms that have small regret against sparse
partition models where the base models allocated to the
segments are from a small subset of N of the M mod-
els. The Bayes algorithm when run on all such partition
models achieves regret ln

(
M
N

)
+ ln

(
T−1
B−1

)
+ B lnN , but

contrary to the non-sparse case, emulating this algorithm
is NP-hard. However in a breakthrough paper, Bousquet
and Warmuth in 2001 [4] gave the efficient MPP algo-
rithm with only a slightly weaker regret bound. Like Fixed
Share, MPP maintains M “posterior” weights, but it in-
stead mixes in a bit of all past posteriors in each update.
This causes weights of previously good models to “glow”
a little bit, even if they perform bad locally. When the data
later favors one of those good models, its weight is pulled
up quickly. However the term “posterior” is a misnomer
because no Bayesian interpretation for this curious self-
referential update was known. Understanding the MPP
update is a very important problem because in many prac-
tical applications [5, 6]1 it significantly outperforms Fixed
Share.

Our main philosophical contribution is finding a fully
Bayesian interpretation for MPP. We employ the special-

1The experiments reported in [5] are based on precursors of MPP.
However MPP outperforms these algorithms in later experiments we
have done on natural data for the same problem (not shown).
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ist framework from online learning [7, 8, 9]. So-called
specialist models are either awake or asleep. When they
are awake, they predict as usual. However when they are
asleep, they “go with the rest”, i.e. they predict with the
combined prediction of all awake models.

Instead of fully coordinated partition models, we con-
struct partition specialists consisting of a base model and
a set of segments where this base model is awake. The fig-
ure to the right shows how a comparator partition model
is assembled from partition specialists. We can emulate
Bayes on all partition specialists; the NP-completeness is
avoided by forgoing a-priori segment synchronization. By
carefully choosing the prior, the exponentially many pos-
terior weights collapse to the small number of weights
used by the efficient MPP algorithm. Our analysis tech-
nique magically aggregates the contribution of the N par-
tition specialists that constitute the comparator partition,
showing that we achieve regret close to the regret of Bayes
when run on all full partition models. Actually our new in-
sights into the nature of MPP result in slightly improved
regret bounds.

We then apply our methods to the online multitask
learning problem where a small subset of models from a
big set solve a large number of tasks. Again simulating
Bayes on all sparse assignments of models to tasks is NP-
hard. We split an assignment into subset specialists that
assign a single base model to a subset of tasks. With the
right prior, Bayes on these subset specialists again gently
collapses to an efficient algorithm with a regret bound not
much larger than Bayes on all assignments. This consid-
erably improves the previous regret bound of [10]. Our al-
gorithm simply maintains one weight per model/task pair
and does not rely on sampling (often used for multitask
learning).

Why is this line of research important? We found
a new intuitive Bayesian method to quickly recover in-
formation that was learned before, allowing us to exploit
sparse composite models. Moreover, it expressly avoids
computational hardness by splitting coordinated compos-
ite models into smaller constituent “specialists” that are
asleep in time steps outside their jurisdiction. This method
clearly beats Fixed Share when few base models constitute
a partition, i.e. the composite models are sparse.

We expect this methodology to become a main tool
for making Bayesian prediction adapt to sparse models.
The goal is to develop general tools for adding this type
of adaptivity to existing Bayesian models without losing

efficiency. It also lets us look again at the updates used in
Nature in a new light, where species/genes cannot dare
adapt too quickly to the current environment and must
guard themselves against an environment that changes or
fluctuates at a large scale. Surprisingly these type of up-
dates might now be amenable to a Bayesian analysis. For
example, it might be possible to interpret sex and the dou-
ble stranded recessive/dominant gene device employed by
Nature as a Bayesian update of genes that are either awake
or asleep.
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1University of Campinas, Brazil.
ajg@ime.unicamp.br, bveronica@ime.unicamp.br,

2Federal University of São Carlos, Brazil.

ABSTRACT

In this paper we address the problem of model selection
for the set of finite memory stochastic processes with fi-
nite alphabet, when the data is contaminated. We consider
m independent samples, with most of them being realiza-
tions of the same stochastic process with law Q, which is
the one we want to retrieve. We devise a model selection
procedure such that for a sample size large enough, the se-
lected process is the one with law Q. Our model selection
strategy is based on estimating relative entropies to select
a subset of samples that are realizations of the same law.
Although the procedure is valid for any family of finite
order Markov models, we will focus on the family of vari-
able length Markov chain models, which include the fixed
order Markov chain model family. We define the asymp-
totic breakdown point γ for a model selection procedure,
and we show the value γ for our procedure. This means
that if the proportion of contaminated samples is smaller
than γ, then, as the sample size grows our procedure se-
lects a model for the process with law Q.

1. INTRODUCTION

In this paper we propose a robust strategy to select mo-
dels from samples coming from a process which is con-
taminated and it is a discrete time stochastic process, on a
finite alphabet. We will only consider the family of vari-
able length Markov chain models, from now on VLMC
(see [4, 1, 2, 5]) because it includes the fixed order Markov
chain models and the independent case. For VLMC model
selection we will use the version of the CTM algorithm in-
troduced by [2], which is based on the Bayesian Informa-
tion Criterion (BIC). It has been shown by [3] that a small
Bernoulli random perturbation on a sample produced by
a VLMC will effectively transform the process to an in-
finity memory process. They also show a variation of the
original context algorithm given by [4] which can recover
the VLMC model of the original chain, provided that the
noise is small enough.
In this work we consider a different kind of contamina-
tion, we have a set of m independent samples, with most
of them being from the same stochastic process with law
Q, whose model we want to recover. The approach of this
paper can be applied yet in the case in which we have only
one sample produced by the concatenation of realizations
of a mixture process which is the process Q plus a con-

taminant process. We define the asymptotic breakdown
point γ for the model selection problem and we show the
value of γ for our procedure.
Our procedure can be applied when the data is coming
from a mixture of stochastic processes, for example in the
problem of classification of languages according to their
rhythmic features, using speech samples. The usual pro-
cedure to deal with this topic has been choose a subset of
the original sample which seems best represent each lan-
guage. Instead, if we apply this kind of robust procedure
can be taken the complete dataset, see [6].

2. PRELIMINARIES

Let (Xt) be a discrete time stochastic process on a finite
alphabet A with cardinal |A|. Denote the string (concate-
nation of elements from A) akak+1 . . . ar by ark, where
ai ∈ A, k ≤ i ≤ r. If the stochastic process (Xt) has
probability law Q, and if xn1 is a n realization of that pro-
cess, we denote Q(xn1 ) = Prob(Xn

1 = xn1 ). The transi-
tion probability from the sequence xn1 to the symbol a ∈
A is Q(a|xn1 ) = Prob(Xn+1 = a|Xn

1 = xn1 ). Given a
string s = akak+1 . . . ar, we denote its length as l(s) =
r− k+ 1. The empty string is denoted by ∅ and l(∅) = 0.
We say that the string v is a postfix of a string s when
there exists a string u such that s = uv. When s 6= v, v is
a proper postfix of s.

Definition 1 A set T of strings is called a tree if satisfies
the following rules

1. no s1 ∈ T is a postfix of any other s2 ∈ T ,
2. no s1 ∈ T can be replaced by a proper postfix with-

out violating rule 1.

We denote by d(T ) = max
(
l(s), s ∈ T ) the depth of the

tree T .
Definition 2 Let (Xt) be a finite order stationary ergodic
stochastic process on a finite alphabet A with probability
lawQ.We will say that the tree T is a context tree for (Xt)
if for any n ≥ d(T ) and for any sequence of symbols in
A, xn1 , there exist a postfix s ∈ T such that

Q(a|xn1 ) = Q(a|s), ∀a ∈ A, (1)

and no proper postfix of s satisfies equation (1). In that
case s is called a context for the process Q.
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Definition 3 We will say that the stochastic process (Xt)
is a variable length Markov chain compatible with the
context tree T if it verify definition 2.

Each model in the family of variable length Markov chain
models, is identified by its context tree. For more details
see [4, 1]. There are diverse methodologies for the se-
lection and estimation of context trees, see for example
[1, 2, 4, 5]. The context tree maximization CTM algo-
rithm proposed by [2] is based on the BIC criterion and it
will be used in this work for the statistical estimation of
context trees.
For a given value D with n > D, if s is some string
l(s) < D, a ∈ A we denote by Nn(s, a) the number of
occurrences of the string s followed by a in the sample xn1 ,
Nn(s, a) =

∣∣{i : D < i ≤ n, xi−1
i−D = s, xi = a}∣∣. The

number of occurrences of s in the sample xn1 is denoted by
Nn(s) and Nn(s) =

∣∣{i : D < i ≤ n, xi−1
i−D = s}∣∣. We

denote by K(xn1 , D) the family of feasible context trees,
where a feasible context tree T is such that d(T ) ≤ D
and Nn(s) ≥ 1 for all s ∈ T and for each string s′ with
Nn(s′) ≥ 1 it has a postfix s ∈ T . Now we can define the
context tree estimator

T̂ (xn1 ) = arg max
T ∈K(xn1 ,D)

∏
s∈T

P̃s(xn1 ) (2)

where P̃s(xn1 ) = n−
(|A|−1)

2 P̃ML,s(x
n
1 ). P̃ML,s(x

n
1 ) =∏

a∈A
(
Nn(s,a)
Nn(s)

)Nn(s,a)

if Nn(s) ≥ 1 and P̃ML,s(x
n
1 ) =

1 if Nn(s) = 0.
For fixed n is considered D = D(n) = log(n). For a
finite memory Markov process, T̂ (xn1 ) converges eventu-
ally almost surely to the true T of the law Q. The algo-
rithm in [2] allows to compute these estimators in O(n)
time, and to compute them on-line for all i ≤ n in o(n log(n))
time. According to the corollary 2.12 in [2] the empirical
probabilities Q̂T̂ (a|s) = Nn(s,a)

Nn(s) , a ∈ A, s ∈ T̂ con-
verges to the true conditional probabilities Q(a|s), a ∈
A, s ∈ T almost surely as n→∞.
In order to simplify the notation we avoid the reference to
the context tree T (orT̂ ) when the underlying context tree
is understood and we adopt the notation

Q̂ = ĈTM((xt)nt=1)

to emphasize that the estimation uses the CTM algorithm.

3. RELATIVE ENTROPY

Definition 4 Given two probability mass functions P (·)
and Q(·), the relative entropy is

D(P ||Q) =
∑
x∈χ

P (x) log
(P (x)
Q(x)

)
.

Remark 1 Let P (·), Q(·) be two probability functions.
Then, D(P ||Q) ≥ 0. The equality occurs if and only if
P (x) = Q(x),∀x ∈ χ.

Definition 5 Let TP and TQ be two context trees follow-
ing the definition 2 with probability law P and Q respec-
tively. TPQ is defined by all the strings from TP and TQ,
such that TPQ satisfy the definition 1.

From the previous definition,
TPQ = {s ∈ TP ∪ TQ : 6 ∃s′ ∈ TP ∪ TQ postfix of s} . From
Theorem 3 (see [6]), using TPQ it is possible to express
the entropy between two processes through its conditional
entropies asD

(
P ||Q) =

∑
s∈TPQ P (s)D

(
P (·|s)||Q(·|s)).

Remark 2 For s ∈ TPQ, we observe that P (·|s) is the
usual probability when s ∈ TP . If s /∈ TP , ∃s1 ∈ TP and
x some string, such that s = xs1 and P (·|s) = P (·|s1).

4. ASYMPTOTIC BREAKDOWN POINT

Assumption 1 For a family F of stochastic processes,
consider a collection {(Xi,t), i = 1, . . . ,m} of m inde-
pendent finite memory stationary processes belonging to
F , where (Xi,t) has probability law Qi. If JQi =
{j ∈ {1, ...,m} : (Xjt) ∼ Qi} , suppose that exists i0 such
that ∀i 6= i0, |JQi0 | > |JQi |, with i, i0 ∈ {1, . . . ,m},
Qi0 will be called as majority law of F . Denote by Cmn =
{(x1,t)nt=1, (x2,t)nt=1 . . . , (xm,t)

n
t=1} a collection ofm sam-

ples of size n from (Xi,t), i = 1, . . . ,m.

Let S be a strategy of estimation, i.e.

S : ΩF → F

where ΩF is the sample space of processes inF and S(Cmn )
denotes the value of the estimator from the sample collec-
tion Cmn .
Remark 3 Under the Assumption 1, S(Cmn ) indicates some
strategy to select a sample (from Cmn ) or some set of sam-
ples (the best ones) to make the estimation of the majority
law Qi0 .

We define now the asymptotic breakdown point of the
model estimator S(Cmn ).

Definition 6 Under the Assumption 1, the model estima-
tor S(Cmn ) has an asymptotic breakdown point equal to γ
for the family F , if γ is the smallest value into (0, 1] such

that, if
|JQi0 |
m < γ then,

lim
n→∞S(Cmn ) 6= Qi0 , almost surely.

5. ESTIMATORS

Given the collection of samples Cmn , for each i ∈ {1, ...,m}
denote Q̂i = ĈTM((xi,t)nt=1) the model estimated from
the sample (xi,t)nt=1 using the algorithm introduced in
[2]. For each i, j ∈ {1, ...,m}, denote by d̂(i||j)(Cmn ) the
relative entropy between Q̂i and Q̂j , i.e. d̂(i||j)(Cmn ) =

D
(
Q̂i||Q̂j

)
. Define then,

d(i,j)(Cmn ) =
d̂(i||j)(Cmn ) + d̂(j||i)(Cmn )

2
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and

V̂j(Cmn ) =
1
m

m∑
i=1

d(j,i)(Cmn ).

We will refer to d(i,j)(Cmn ) as being the Symmetrized Re-
lative Entropy (SRE) between the samples i and j from
Cmn . We will also say that V̂j(Cmn ) is the mean SRE be-
tween the sample j and the other samples in Cmn .
Now, sort in increasing order the set {V̂j(Cmn ), j = 1, ...,m}
and call j∗i (Cmn ) the index of the sample in the ith position
on the ordered set, i.e.

j∗1 (Cmn ) = arg min
j=1,...,m

{
V̂j(Cmn )

}
,

also
j∗m(Cmn ) = arg max

j=1,...,m

{
V̂j(Cmn )

}
.

Remark 4 To evaluate D
(
Q̂i||Q̂j

)
it is used Theorem 3

(see [6]), replacing the true probabilities by its empirical
estimators and taking by the set of strings, the common
tree given by definition 5 using the estimated trees from
Q̂i and Q̂j .

Theorem 1 Under the Assumption 1, if the estimator S(Cmn )
is defined as being Q̂j∗i (Cmn ) for some natural number i <
m/2, then, S(Cmn ) has asymptotic breakdown point equal
to 1

2 .

(See details of the proof in [6]).
In terms of quality of estimation, we can use Theorem 1 in
order to propose a better strategy that can take advantage
of the best samples detected by

{
V̂j(Cmn )

}
to construct a

more powerful estimator for the majority law Qi0 .

Definition 7 Under the Assumption 1, we define the α-
trimmed CTM model estimator for Q as being

Q̂α = CTM
((
xj∗i (Cmn ),t

)n
t=1

, i = 1, . . . , [(1− α)m]
)
,

for α such that [(1− α)m] ≥ 1. Where [(1− α)m] is the
integer part of (1− α)m.

Remark 5 Q̂α computes the CTM estimator assuming the
selected samples as independent, this means that to com-
pute the occurrences of each string s followed by a ∈ A
will be necessary compute Q̂(a|s) = Nαn (s,a)

Nαn (s) withNα
n (s) =∑[(1−α)m]

i=1 N i
n(s) and Nα

n (s, a) =
∑[(1−α)m]
i=1 N i

n(s, a)
where N i

n are the occurrences computed from the sample(
xj∗i (Cmn ),t

)n
t=1

. Where each string s comes from the set
of feasible trees, with the same restriction as was assumed
for equation(2).

Theorem 2 Under the Assumption 1, for α such that [(1−
α)m] ≥ 1. The estimator S(Cmn ) defined by Q̂α has

(i) an asymptotic breakdown point equal to α, when
α ∈ (0, 1

2 ) and

(ii) an asymptotic breakdown point equal to 1
2 when

α ∈ [ 12 , 1].

(See details of the proof in [6]).

Remark 6 If α = (1 − 1
m ) the estimator is given by

Q̂j∗1 (Cmn ), i.e. the most representative empirical law, be-
cause the sample (xj∗1 (Cmn ),t)nt=1 would be considered the
most representative in terms of the mean SRE.

6. CONCLUSION

In this paper we introduce a strategy of robust estimation
to estimate the majority law from a collection of samples
coming from VLMC processes. That strategy takes ad-
vantage from the convergence “almost surely” guaranteed
by the CTM algorithm, but it is not restricted to this al-
gorithm and can be applied using other algorithms of esti-
mation. From a practical point of view, the strategy takes
advantage also from the structure of trees (of VLMC), be-
cause the structure of tree allows to express the relative
entropy between two processes in terms of the conditional
probabilities. Using a very convenient structure of tree,
that is a composition between the trees of the two pro-
cesses (from [6]) the strategy can be formulated as a pre-
cise calculus between the empirical probability laws. The
strategy achieves the best level of robustness, that is at
most 50% of contamination. In addition, the strategy re-
veals how to improve the estimation, doing to grow the
number of samples used for it, with the selection of the
best samples to do the estimation.
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ABSTRACT

The discovery of patterns is an important aspect of data
mining. Data mining is the field of research concerned with
the extraction of useful insight from large databases. The
process of finding patterns in data is called pattern mining.
A pattern can be any type of regularity in the data, such
as, e.g., items are typically sold together, or events that
often happen in close vicinity. An ideal outcome of pattern
mining is a small set of patterns, containing no redundancy
or noise, that identifies the key structure of the data.

We pursue this ideal for sequential data, employing a
pattern set mining approach. We employ the MDL prin-
ciple to identify the best set of sequential patterns, and
propose two approaches for mining good pattern sets: the
first algorithm selects a good pattern set from a large can-
didate set, while the second is a parameter-free any-time
algorithm that mines pattern sets directly from the data.
Experimentation on synthetic and real data demonstrates
we efficiently discover small sets of informative patterns.

1. INTRODUCTION

Suppose we have an event sequence database, and are in-
terested in its most important patterns. Traditionally, we
would apply frequent pattern mining, and mine all patterns
that occur at least so-many times. For non-trivial thresh-
olds, however, by the pattern explosion we would then
be buried in huge amounts of highly redundant patterns—
making the patterns the problem instead of the solution.

We therefore adopt a different approach. Instead of
considering patterns individually, which is where the ex-
plosion stems from, we are after the set of patterns that
summarises the data best. Desired properties of such a
summary include that it should be small, generalise the
data well, and be non-redundant. To this end, we employ
the Minimum Description Length principle [1], by which
we can identify the best set of patterns as the set by which
we can describe the data most succinctly.

This approach has been shown to be highly successful
for transaction data [2], where the discovered patterns pro-
vide insight, as well as high performance in a wide range
of data mining tasks, including clustering, missing value
estimation, and anomaly detection.

Sequence data, however, poses additional challenges
over binary data. For starters, event orders are important,
and we have to take gaps in patterns into account. As such,

encoding the data given a cover, finding a good cover given
a set of patterns, as well as finding good sets of patterns,
are all much more complicated for sequence data.

As we identify the best model by compression, and con-
sider strings as data, standard compression approaches are
related. However, although general purpose compressors
provide top-notch compression, they do not result inter-
pretable models. In our case, compression is not the goal,
but a means for identifying those patterns that together
describe the data most succinctly.

We here introduce a statistically well-founded approach
for succinctly summarising event sequences, or SQS for
short—pronounced as ‘squeeze’. We formalise how to
encode a sequence dataset given a set of episodes, and
formalise an MDL score for pattern sets. To optimise this
score, we give an efficient heuristic to determine which
pattern best describes what part of your data. To find
good sets of patterns, we introduce two heuristics: SQS-
CANDIDATES filters a given candidate collection, and SQS-
SEARCH is a parameter-free any-time algorithm that effi-
ciently mines models directly from data.

In this extended abstract we give a quick overview of
SQS, only sketching the encoding and algorithms, and only
report on some highlights of the empirical evaluation. For
more detail, we refer the reader to [3].

2. MDL FOR EVENT SEQUENCES

As data type we consider event sequences. A sequence
database D over an event alphabet Ω consists of |D| se-
quences S ∈ D. Every S ∈ D is a sequence of |S| events
e ∈ Ω, i.e. S ∈ Ω|S|. We write S[i] to mean the ith event
in S and S[i, j] to mean a subsequence S[i] · · ·S[j]. We
denote by ||D|| the sum of the lengths of all Si ∈ D, i.e.
||D|| =

∑
Si∈D |Si|. The support of an event e in S is

its occurrences in S, i.e. supp(e | S) = |{i ∈ S|i = e}|,
and the support of e in a database D is defined as supp(e |
D) =

∑
S∈D supp(e | S).

As patterns we consider serial episodes. A serial episode
X is a sequence of events and we say that a sequence S
contains X if there is a subsequence in S equal to X . Note
that we are allowing gap events between the events of X .
A singleton pattern is a single event e ∈ Ω.

As models we consider code tables. A code table has
four columns, one for patterns, one for pattern codes, and
the latter two contain codes for indicating presence/absence
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of a gap within a pattern. To ensure any sequence over
Ω can be encoded by a code table, we require that all the
singleton events in the alphabet, X ∈ Ω, are included in a
code table CT .

Encoding a Database

An encoded database consists of two code streams, Cp and
Cg, that follow from the cover C chosen to encode the
database. The first code stream, the pattern-stream, de-
noted by Cp, is a list of |Cp| codes, codep(·), for patterns
X ∈ CT corresponding to the patterns chosen by ‘cover’
algorithm. For example, codep(a)codep(b) codep(c) en-
codes the sequence ‘abc’.

For L(codep(X)), the lengths of pattern codes in Cp,
as stored in the second column of CT , we use optimal pre-
fix codes. Let us write usage(X) for how often codep(X)
occurs in Cp. That is, usage(X) = |{Y ∈ Cp | Y =
codep(X)}|. Then, the probability of codep(X) in Cp is
its relative occurrence in Cp. So, we have

L(codep(X) | CT ) = − log
(

usage(X)∑
Y ∈CT usage(Y )

)
.

Serial episodes allow for gaps—only when we read
the code for a singleton pattern X we can unambiguously
append X to the decoded data. When X is a non-singleton
pattern, we may only append the first symbol x1, as before
writing event x2 of X , we need to know whether or not
one or more gap events occur in between.

This is what Cg, the gap code stream, encodes. It is a
list of optimal prefix codes for gap occurrences/absences
within pattern embeddings. These code lengths,L(codeg(X))
and L(coden(X)), are dependent on their relative fre-
quency. Let us write gaps(X) to refer to the number of
gap events within the usage of pattern X in the cover of D.
We then resp. have fills(X) = usage(X)(|X| − 1), for
the number of non-gaps in the usage of pattern X , and

L(codeg(X) | CT ) = − log
(

gaps(X)
gaps(X) + fills(X)

)
,

for the length of a gap code within a pattern X , and ana-
logue for L(coden(X) | CT ).

Combining the above, we straightforwardly arrive at
L(Cp | CT ) =

∑
X∈CT usage(X)L(codep(X)) for the

encoded length of the pattern-stream, and analogously have

L(Cg | CT ) =
∑

X∈CT
|X|>1

(
gaps(X)L(codeg(X))+

fills(X)L(coden(X))
)

for Cg. We can then define L(D | CT ), the length of a
database D given code table CT and cover C as

L(D | CT ) = LN(|D|) +
∑
S∈D

LN(|S|) +

L(Cp | CT ) + L(Cg | CT ) ,

where |D| is the number of sequences in D, and |S| is the
length of a sequence S ∈ D. To encode these values, we
use LN, Rissanen’s universal code for integers [4].

Data D: a b d c a d b a a b c

Encoding 1: using only singletons
Cp a b d c a d b a a b c

Encoding 2: using patterns
Cp p d a q b p

Cg

alignment
a b d c a d b a a b c
p q p

gap gap

CT 1: a a

b b

c c

d d

CT 2: a a

b b

c c

d d

abc p

da q

ga
ps

no
n-g

ap
s

Figure 1. Toy example of two possible encodings. The first
encoding uses only singletons. The second encoding uses
singletons and two patterns, namely, abc and da

An Example. Consider the toy example in Fig. 1. One
possible encoding is to use only singletons, meaning that
gap stream is empty. Another encoding is to use patterns.
For example, to encode ‘abdc’, we first give the code for
abc in the pattern stream, then a no-gap code (white) in Cg
to indicate b, then a gap code (black) in Cg, next the code
for d in Cp, and we finish with a no-gap code in Cg .

Encoding a Code Table

Next we discuss how to calculate L(CT ), the encoded
length of a code table CT . We encode its number of
entries using LN. For later use, and to avoid bias by large
or small alphabets, we encode the number of singletons,
|Ω|, and the number of non-singleton entries, |CT \ Ω|,
separately. We disregard any non-singleton pattern with
usage(X) = 0, as it is not used for describing the data.

The simplest valid code table consists of only single-
tons. We refer to this as the standard code table, or ST .
We encode the patterns in the left-hand side column using
ST , which allows us to decode up to the names of events.

The usage of Y ∈ ST is the support of Y in D. Hence,
the code length of Y in ST is defined as L(codep(Y ) |
ST ) = − log supp(Y |D)

||D|| . Before we can use these codes,
the recipient needs these supports. We transmit these by
the index of a number composition, the number of com-
binations of summing to m with n, non-zero, terms. The
length in bits of such an index is LU (m,n) = log

(
m−1
n−1

)
,

where for m = 0, and n = 0, we define LU (m,n) = 0.
We can now reconstruct the first column of CT . To

encode a pattern X ∈ CT , the number of bits is the
length of X , |X|, and the sum of the singleton codes, i.e.
LN(|X|) +

∑
xi∈X L(code(xi) | ST ).

Next, we encode the second column. To avoid bias,
we treat the singletons and non-singleton entries of CT
differently. Let us write P to refer to the non-singleton
patterns in CT , i.e. P = CT \ Ω. For the elements
of P , we first encode the sum of their usages, denoted
by usage(P), and use LU identify the individual usages.
Together with ST , we can reconstruct all usages in CT .

This leaves the gap-codes of CT , for which we encode
gaps(X) using LN. The number of non-gaps then follows
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from the length of a pattern X and its usage.
Together, we have L(CT | C , D), the encoded size in

bits of a code table CT for a cover C of a database D, as

L(CT | C ) =LN(|Ω|) + LU (||D||, |Ω|)+
LN(|P|+ 1) + LN(usage(P) + 1)+

LU (usage(P), |P|) +
∑
X∈P

L(X,CT ) ,

whereL(X,CT ), the encoded length for the events, length,
and the number of gaps of a pattern X in CT , is

L(X,CT )

= LN(|X|) + LN(gaps(X) + 1) +
∑
x∈X

L(codep(x | ST )) .

By MDL, we define the optimal set of serial episodes
for a given sequence database as the set for which the
optimal cover and associated optimal code table minimises

L(CT , D) = L(CT | C ) + L(D | CT ) .

More formally, we define the problem as follows.

Minimal Code Table Problem Let Ω be a set of events
and let D be a sequence database over Ω, find the minimal
set of serial episodes P such that for the optimal cover C
of D using P and Ω, the total encoded cost L(CT , D) is
minimal, where CT is the code-optimal code table for C .

This problem entails a large search space. First of all,
there are many different ways to cover a database given
a set of patterns. Second, there are many sets of serial
episodes P we can consider. However, neither of these
problems exhibits trivial structure that we can exploit for
fast search, e.g. (weak) monotonicity.

3. COVERING A STRING

Encoding, or covering, a sequence is more difficult than de-
coding one. The reason is simple: when decoding there is
no ambiguity, while when encoding there are many choices,
i.e. what pattern to encode a symbol with. In other words,
given a set of episodes, there are many valid ways to cover
a sequence, where by our problem definition we are after
the cover C that minimises L(CT , D).

Assume we are decoding a sequence Sk ∈ D. Assume
we decode the beginning of a patternX at Sk[i] and that the
last symbol belonging to this instance of X is, say, Sk[j].
We say that Sk[i, j] is an active window for X . Moreover,
we can use FINDWINDOWS in [5] to discover all minimal
windows for a pattern X in O(|X|||D||).

Let P be the set of non-singleton patterns used by the
encoding. We define an alignment A to be the set of all
active windows for all non-singleton patternsX ∈ P : A =
{(i, j,X, k) | Sk[i, j] is an active window for X,Sk ∈ D}.
An alignment corresponding to the second encoding given
in Figure 1 is {(1, 4, abc, 1), (6, 8, da, 1), (9, 11, abc, 1)}.

Note that an alignment A does not uniquely define the
cover of the sequence, as it does not take into account how

the intermediate symbols (if any) within the active win-
dows of a pattern X are encoded. However, an alignment
A for a sequence database D does define an equivalence
class over covers of the same encoded length. In fact, given
a sequence database D and an alignment A, we can de-
termine the number of bits our encoding scheme would
require, as we can distill the usage(X) and gaps(X) from
A. As such, given an alignment A for D, we can trivially
construct a valid cover C for D, simply by following A
and greedily covering Sk with pattern symbols if possi-
ble, and singletons otherwise. Likewise, we can derive the
associated code-optimal code table CT for A.

In [3] we show that given a code table CT , we can
find the alignment of D that minimises the encoded length
using the code lengths in CT . With the above, we can then
calculate the optimal codes for this new alignment. By
iterating these steps, we can heuristically approximate the
optimal cover of D given a set of patterns P .

4. MINING CODE TABLES

With the above, we can score the quality of a pattern set,
and heuristically optimise the alignment of a pattern set.
This leaves us with the problem of finding good sets of
patterns. We sketch our two algorithms to do so.

4.1. Filtering Candidates

Our first algorithm, SQS-CANDIDATES, assumes that we
have a (large) set of candidate patterns F . In practice,
we assume the user obtains this set of patterns using a
frequent pattern miner, although any set of patterns over
Ω will do. From F we select that subset P ⊆ F such that
the optimal alignment A and associated code table CT
minimises L(D,CT ).

We sort candidates F ascending by L(D, {X}). We
then iteratively greedily test each patternX ∈ F . If adding
X to P improves the score, we keep X in P , otherwise it
is permanently removed.

Over time, new patterns can take over the role of older
patterns. To this end, we prune redundant patterns after
each successful addition. During pruning, we iteratively
consider each pattern Y ∈ P in order of insertion. If P \X
improves the total encoded size, we remove X from P . As
testing every pattern in P at every successful addition may
become rather time-consuming, we use a simple heuristic:
if the total gain of the windows of X is higher than the cost
of X in the code table we do not test X .

After SQS-CANDIDATES considered every pattern of
F , we run one final round of pruning without this heuristic.
Finally, we order the patterns in P by L(D,P)−L(D,P \
X). That is, by the impact on the total encoded length when
removing X from P . This order tells us which patterns in
P are most important.

4.2. Directly Mining Good Code Tables

The SQS-CANDIDATES algorithm requires a collection of
candidate patterns to be materialised, which in practice
can be troublesome; the well-known pattern explosion may
prevent patterns to be mined at as low thresholds as desired.
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We therefore propose an alternative strategy, that discovers
good code tables directly from data. Instead of filtering a
pre-mined candidate set, we now discover candidates on
the fly, considering only patterns that we expect to optimise
the score given the current alignment.

To illustrate the general idea, consider that we have
a current set of patterns P . We iteratively find patterns
of form XY , where X,Y ∈ P ∪ Ω producing the lowest
L(D,P ∪{XY }). We add XY to P and continue until no
gain is possible. Unfortunately, as testing each combination
takes O((|P| + |Ω|)2(|P| + 1) ‖D‖) time, we cannot do
this exhaustively and exactly within reasonable time.

To guarantee the fast discovery of good candidates, we
design a heuristic that, given a pattern P , will find a pattern
PQ of high expected gain in only O(|P|+ |Ω|+ ‖D‖).

In [3], we show that if we take N active windows of
P , and N active windows of Q, and convert them into
N active windows of PQ, the difference in total encoded
length can be calculated in constant time—as we know
which N active windows to use: those with shortest length.

This gives the outline of SQS-SEARCH. We enumerate
minimal windows of PQ from shortest to largest. At each
step we compute the score using Proposition 3 of [3], and
among these scores we the pick optimal one. We can do
this in linear time by considering the active windows of P
ascending on length, ignoring all singleton gap elements,
and counting all elements occurring right after P .

To save on computation, we do not iteratively consider
the estimated optimal PQ, but instead iteratively compute
and rank all PQ on estimated gain, consider these in turn,
and recompute once the candidate pool is depleted. Like for
SQS-CANDIDATES, we apply pruning after each accepted
candidate, as well as at the end of the search.

5. EXPERIMENTS

We here give a quick taste of the results obtained with SQS,
and refer the interested reader to the full publication for
further empirical evaluation [3].

Synthetic Data. First, we consider the synthetic Indep,
P10, and P50 datasets. Each consists of a single sequence
of 10 000 events over an alphabet of 1 000. In the former,
all events are independent, whereas in the latter two we
planted resp. 10 and 50 patterns of 5 events 10 times each,
with 10% probability of having a gap between consecutive
events, but are independent otherwise.

For the Indep dataset, though 9 000+ episodes occur
at least twice, both methods correctly identify it does not
contain significant structure. For P10 both methods return
the 10 patterns. P50 has a very high density of pattern
symbols (25%). SQS-CANDIDATES and SQS-SEARCH
resp. find 47 and 46 patterns exactly, plus fragments, due
to partial overwrites during generation, of the others.

Real Data. In order to interpret the patterns, we con-
sider 788 abstracts of papers from the Journal of Machine
Learning Research website. The events are the stemmed
words from the text, with stop words removed. We obtain
compression of about 30 000 bits, with 563 and 580 pat-
terns respectively, more than two orders of magnitude less

Table 1. JMLR data. Top-10 patterns by SQS-SEARCH

patterns ∆L patterns ∆L

1. supp. vec. mach. 850 6. large scale 329
2. machine learn. 646 7. near. neighbor 322
3. state [of the] art 480 8. dec. tree 293
4. data set 446 9. neural netw. 289
5. Bayesian netw. 374 10. cross val. 279
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Figure 2. Addresses dataset, ∆L. (left) varying sup-
port thresholds for SQS-CANDIDATES. (right) SQS-
CANDIDATES and SQS-SEARCH per accepted candidate.

than the number of candidates for SQS-CANDIDATES.
Table 1 depicts the top-10 patterns most aiding com-

pression, as found by SQS-SEARCH. ∆L is the increase
in bits the pattern would be removed from CT . The left-
hand plot of Fig. 2, for SQS-CANDIDATES, shows the gain
in compression for different support thresholds. Lower
thresholds, i.e richer candidate sets, allow for better mod-
els. In the right-hand plot, we compare SQS-CANDIDATES
and SQS-SEARCH, showing the gain in bits over ST per
candidate accepted into CT . Both search processes con-
sider patterns aiding compression strongly first. The slight
dip of SQS-SEARCH is by its batch-wise search.

6. CONCLUSION

Altogether, the long and the short of it is that SQS mines
small sets of highly informative, non-redundant, serial
episodes that succinctly describe the data at hand.
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ABSTRACT
We study online learning under logarithmic loss with reg-
ular parametric models. We show that a Bayesian strat-
egy predicts optimally only if it uses Jeffreys prior. This
result was known for canonical exponential families; we
extend it to parametric models for which the maximum
likelihood estimator is asymptotically normal. The opti-
mal prediction strategy, normalized maximum likelihood,
depends on the number n of rounds of the game, in gen-
eral. However, when a Bayesian strategy is optimal, nor-
malized maximum likelihood becomes independent of n.
Our proof uses this to exploit the asymptotics of normal-
ized maximum likelihood. The asymptotic normality of
the maximum likelihood estimator is responsible for the
necessity of Jeffreys prior.

1. INTRODUCTION

In the online learning setup, the goal is to predict a se-
quence of outcomes, revealed one at a time, almost as
well as a set of experts. We consider online density es-
timators with log loss, where the forecaster’s prediction
at each round takes the form of a probability distribution
over the next outcome, and the loss suffered is the neg-
ative logarithm of the forecaster’s probability of the out-
come. The aim is to minimize the regret, which is the dif-
ference between the cumulative loss of the forecaster (that
is, the sum of these negative logarithms) and that of the
best expert in hindsight. The optimal strategy for sequen-
tially assigning probability to outcomes is known to be
normalized maximum likelihood (NML) [see, for e.g. [1],
and [2], and see Definition 4 below]. NML suffers from
two major drawbacks: the horizon n of the problem needs
to be known in advance, and the strategy can be compu-
tationally expensive since it involves marginalizing over
subsequences. In this paper, we investigate the optimality
of two alternative strategies, namely the Bayesian strategy
and the sequential normalized maximum likelihood strat-
egy; see Definitions 5 and 6 below. Bayesian prediction
under Jeffreys prior has been shown to be asymptotically
optimal [see, for e.g. [2], chaps 7,8]. Moreover the regret
of SNML is within a constant of the minimax optimal [3].
We show that for a very general class of parametric mod-
els (Definition 1), optimality of a Bayesian strategy means

that the strategy uses Jeffreys prior. Furthermore we show
that optimality of the Bayesian strategy is equivalent to
optimality of sequential normalized maximum likelihood.
The major regularity condition for these parametric fami-
lies is that the maximum likelihood estimate is asymptot-
ically normal. This classical condition holds for a broad
class of parametric models. The proofs and further details
are in the full version of this paper [4].

2. DEFINITIONS AND NOTATION

We work in the same setup of [5] and use their definitions
and notation. The goal is to predict a sequence of out-
comes xt ∈ X , almost as well as a set of experts. We use
xt to denote (x1, x2, · · · , xt), x0 to denote the empty se-
quence, and xnm to denote (xm, xm+1, · · · , xn). At round
t, the forecaster’s prediction is a conditional probability
density qt(·|xt−1), where the density is with respect to
a fixed measure λ on X . For example, if X is discrete,
λ could be the counting measure; for X = <d, λ could
be Lebesgue measure. The loss that the forecaster suf-
fers at that round is − log qt(xt | xt−1), where xt is the
outcome revealed after the forecaster’s prediction. The
difference between the cumulative loss of the prediction
strategy and the best expert in a reference set is called the
regret. The goal is to minimize the regret in the worst
case over all possible data sequences. In this paper, we
consider i.i.d. parametric constant experts parametrized by
θ ∈ Θ.

Definition 1 (Parametric Constant Model) A constant ex-
pert is an iid stochastic process, that is, a joint probability
distribution p on sequences of elements of X such that for
all t > 0 and for all x in X , p

(
xt
∣∣xt−1

)
= p (xt). A

parametric constant model (Θ, (X ,Σ), λ, pθ) is a param-
eter set Θ, a measurable space (X ,Σ), a measure λ on
X , and a parameterized function pθ : X → [0,∞) for
which, for all θ ∈ Θ, pθ is a probability density on X
with respect to λ. It defines a set of constant experts via
pθ
(
xt
∣∣xt−1

)
= pθ (xt).

For convenience, we will often refer to a parametric
constant model as just pθ.

A strategy q is any sequential probability assignment
qt(· | xt−1) that, given a history xt−1, defines the condi-
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tional density of xt ∈ X with respect to the measure λ. It
defines a joint distribution q on sequences of elements of
X in the obvious way,

q(xn) =
n∏
t=1

q(xt|xt−1). (1)

In general, a strategy depends on the sequence length n.
We denote such strategies by q(n).

Definition 2 (Regret) The regret of a strategy q(n) on se-
quences of length n with respect to a parametric constant
model pθ is

R(xn, q(n)) =
n∑
t=1

− log q(n)
t (xt|xt−1)

− inf
θ∈Θ

n∑
t=1

− log pθ(xt|xt−1)

= sup
θ∈Θ

log
pθ(xn)
q(n)(xn)

(2)

We consider a generalization of the regret of Defini-
tion 2. This is because some strategies are only defined
conditioned on a fixed initial sequence of observations
xm−1. For such cases, we define the conditional regret of
xn, given a fixed initial sequence xm−1, in the following
way [see [2], chap. 11].

Definition 3 (Conditional Regret)

RΘ(xnm, q
(n)|xm−1) =

n∑
t=m

− log qt(xt|xt−1)

− inf
θ∈Θ

n∑
t=1

− log pθ(xt|xt−1)

= sup
θ∈Θ

log
pθ(xn)

q(n)(xnm | xm−1)
(3)

Notice that the strategy q(n) defines only the conditional
distribution q(n)(xnm | xm−1). We call such a strategy a
conditional strategy. In what follows, where we consider
a conditional strategy, we assume that xm−1 is such that
these conditional distributions are always well defined.

Definition 4 (NML) Given a fixed horizon n, the normal-
ized maximum likelihood (NML) strategy is defined via the
joint probability distribution

p
(n)
nml(x

n) =
supθ∈Θ pθ(xn)∫

Xn supθ∈Θ pθ(yn) dλn(yn)
, (4)

provided that the integral in the denominator exists. For
t ≤ n, the conditional probability distribution is

p
(n)
nml(xt | xt−1) =

p
(n)
nml(x

t)

p
(n)
nml(xt−1)

, (5)

where p(n)
nml(x

t) and p
(n)
nml(x

t−1) are marginalized joint
probability distributions of p(n)

nml(x
n):

p
(n)
nml(x

t) =
∫
Xn−t

p
(n)
nml(x

n) dλn−t(xnt+1). (6)

The regret of the NML strategy achieves the minimax
bound, that is, q(n) = p

(n)
nml minimizes maxxn R(xn, q(n))

[see, for e.g. [2] chap. 6]. Note that p(n)
nml might not be de-

fined if the normalization is infinite. In many cases, for
a sequence xm−1 and for all n ≥ m, we can define the
conditional probabilities

p
(n)
nml(x

n
m|xm−1) =

supθ∈Θ pθ(xn)∫
Xn−m+1 supθ∈Θ pθ(xn) dλn−m+1(xnm)

(7)
For these cases the conditional NML again attains the min-
imax bound, that is, q(n) = p

(n)
nml minimizes

maxxn
m
R(xnm, q

(n) | xm−1) [see [2] chap. 11]. In both
cases, the nml strategy is an equalizer, meaning that the
regrets of all sequences of length n are equal.

Definition 5 (SNML) The sequential normalized maximum
likelihood (SNML) strategy has

psnml(xt | xt−1) =
supθ∈Θ pθ(xt)∫

X supθ∈Θ pθ(xt) dλ(xt)
. (8)

Notice that this update does not depend on the horizon.
Under mild conditions, the regret of SNML is no more
than a constant (independent of n) larger than the mini-
max regret [3]. Once again, psnml is not defined if the
integral in the denominator is infinite. In many cases, for
a sequence xm−1 and for all n ≥ m, the appropriate con-
ditional probabilities are properly defined. We restrict our
attention to these cases.

Definition 6 (Bayesian) For a prior distribution π on Θ,
the Bayesian strategy with π is defined as

pπ(xt) =
∫
θ∈Θ

pθ(xt) dπ(θ). (9)

The conditional probability distribution is defined in the
obvious way,

pπ(xt | xt−1) =
pπ(xt)
pπ(xt−1)

. (10)

We denote the conditional Bayesian strategy for a fixed
xm−1 as pπ(xnm | xm−1).

Jeffreys prior [6] has the appealing property that it is
invariant under reparameterization.

Definition 7 (Jeffreys prior) For a parametric model pθ,
Jeffreys prior is the distribution over the parameter space
Θ that is proportional to

√|I(θ)|, where I is the Fisher
information at θ (that is, the variance of the score,
∂/∂θ ln pθ(X), where X has density pθ).

Our main theorem uses the notion of exchangeability
of stochastic processes.

Definition 8 (Exchangeable) A stochastic process is called
exchangeable if the joint probability does not depend on
the order of observations, that is, for any n > 0, any
xn ∈ Xn, and any permutation σ on {1, . . . , n}, the prob-
ability of xn is the same as the probability of xn permuted
by σ.
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When we consider the conditional distribution
p(xnm | xm−1) defined by a conditional strategy, we are
interested in exchangeability of the conditional stochas-
tic process, that is, invariance under any permutation that
leaves xm−1 unchanged.

The asymptotic normality of the maximum likelihood
estimator is the major regularity condition of the paramet-
ric models that is required for our main result to hold.

Definition 9 (Asymptotic Normality of MLE) Consider
a parametric constant model pθ. We say that the paramet-
ric model has an asymptotically normal MLE if, for all
θ0 ∈ Θ,

√
n
(
θ̂(xn) − θ0

)
d→ N

(
0, I-1 (θ0)

)
, (11)

where I(θ) is the Fisher information at θ, xn is a sample
path of pθ0 , and θ̂(xn) is the maximum likelihood estimate
of θ given xn, that is, θ̂(xn) maximizes pθ(xn).

Asymptotic normality holds for regular parametric mod-
els; for typical regularity conditions, see for example, The-
orem 3.3 in [7].

For parametric models whose maximum likelihood es-
timates take values in a countable set, we need the notion
of a lattice MLE.

Definition 10 (Lattice MLE) Consider a parametric model
pθ with θ ∈ Θ ⊆ <d. The parametric model is said to
have a lattice MLE with diminishing step-size hn, if for
any θ, the possible maximum likelihood estimates of n i.i.d
random variables generated by pθ are points in Θ that are
of the form (b+ k1hn, b+ k2hn, · · · , b+ kdhn), for some
integers k1, k2, · · · , kd and some real numbers b and hn.
Additionally hn is positive and diminishes to zero as n
goes to infinity.

We are now ready to state our main result.

3. MAIN RESULT

We show that in parametric models with an asymptotically
normal MLE, the optimality of a Bayesian strategy im-
plies that the strategy uses Jeffreys prior. Furthermore we
show that the optimality of a Bayesian strategy is equiva-
lent to the optimality of sequential normalized maximum
likelihood. This extends the result for canonical minimal
exponential family distributions from [5] to regular para-
metric models. Note that NML is the unique optimal strat-
egy, so when we say that some other strategy is equivalent
to NML, that is the same as saying that strategy predicts
optimally.

Theorem 3.1 Suppose we have a parametric model pθ
with an asymptotically normal MLE. Assume that the MLE
has a density with respect to Lebesgue measure or that
the model has a lattice MLE with diminishing step-size
hn. Also assume that I(θ), the Fisher information at θ
is continuous in θ, and that, for all x, pθ(x) is continu-
ous in θ. Also fix m > 0 and xm−1, and assume that
p

(n)
nml(x

n
m|xm−1) and pπ(xnm|xm−1) are well defined, where

π is the Jeffreys prior. Then the following are equivalent.

(a) NML = Bayesian:
There is a prior π on Θ such that for all n and all xnm,

p
(n)
nml(x

n
m|xm−1) = pπ(xnm|xm−1) (12)

(b) NML = SNML:
For all n and all xnm,

p
(n)
nml(x

n
m|xm−1) = psnml(xnm|xm−1) (13)

(c) NML = Bayesian with Jeffreys prior:
If π denotes Jeffreys prior on Θ, for all n and all xnm,

p
(n)
nml(x

n
m|xm−1) = pπ(xnm|xm−1) (14)

(d) psnml(·|xm−1) is exchangeable.

(e) SNML = Bayesian:
There is a prior π on Θ such that for all n and all xnm,

psnml(xnm|xm−1) = pπ(xnm|xm−1) (15)

(f) SNML = Bayesian with Jeffreys prior:
If π denotes Jeffreys prior on Θ, for all n and all xnm,

psnml(xnm|xm−1) = pπ(xnm|xm−1) (16)

4. OPEN PROBLEM

Our main result, i.e. Theorem 3.1 shows that the Bayesian
strategy under Jeffreys prior, SNM and NML are all equiv-
alent if and only if SNM is exchangeable. This equiva-
lence holds for many exponential family distributions such
as Normal, Levy, Rayleigh, Exponential. On the other
hand it does not hold for some simple distributions such
as Bernoulli. What properties should a distribution from
an exponential family have that makes its sequential nor-
malized maximum likelihood process exchangeable?
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